A Categorical Transformer with a Data Science Approach for Recommendation Systems Based on Collaborative Filtering

被引:0
|
作者
Hurtado, Remigio [1 ]
Munoz, Arantxa [2 ]
机构
[1] Univ Politecn Salesiana, Calle Vieja 12-30 & Elia Liut, Cuenca, Ecuador
[2] Univ Int La Rioja, Ave Paz 137, La Rioja, Spain
来源
PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 2, ICICT 2024 | 2024年 / 1012卷
关键词
Recommender systems; Collaborative filtering; Data science; Machine learning; Data transformation; Categorical transformer; MATRIX FACTORIZATION;
D O I
10.1007/978-981-97-3556-3_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems help predict what customers might like, such as movies, restaurants, or products. Collaborative filtering, a crucial part of these systems, faces challenges when dealing with user, item, and rating data. Traditional machine learning struggles with this data because user and item data are categorical. To solve this, we propose a method that transforms the original data into new variables, making it more suitable for advanced machine learning and deep learning techniques. This approach enhances prediction quality and opens doors for innovative data processing methods in collaborative filtering.
引用
收藏
页码:261 / 271
页数:11
相关论文
共 50 条
  • [21] AN OPTIMAL SCALING FRAMEWORK FOR COLLABORATIVE FILTERING RECOMMENDATION SYSTEMS
    Vozalis, Manolis G.
    Markos, Angelos I.
    Margaritis, Konstantinos G.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2012, 21 (06)
  • [22] Mitigating sparsity using Bhattacharyya Coefficient and items’ categorical attributes: improving the performance of collaborative filtering based recommendation systems
    Pradeep Kumar Singh
    Pijush Kanti Dutta Pramanik
    Prasenjit Choudhury
    Applied Intelligence, 2022, 52 : 5513 - 5536
  • [23] A Group Recommendation Approach Based on Neural Network Collaborative Filtering
    Du, Jia
    Li, Lin
    Gu, Peng
    Xie, Qing
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2019), 2019, : 148 - 154
  • [24] Personalized Collaborative Filtering Recommendation Approach Based on Covering Reduction
    Zhang Z.
    Zhang Y.
    Ren Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (07): : 607 - 614
  • [25] Collaborative filtering-based recommendation system for big data
    Shen, Jian
    Zhou, Tianqi
    Chen, Lina
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (02) : 219 - 225
  • [26] Collaborative filtering recommendation algorithm based on interactive data classification
    Ji Y.
    Li K.
    Liu S.
    Liu Q.
    Yao H.
    Li K.
    Journal of China Universities of Posts and Telecommunications, 2020, 27 (05): : 1 - 12
  • [27] Data-Sparsity Tolerant Web Service Recommendation Approach Based on Improved Collaborative Filtering
    Qi, Lianyong
    Zhou, Zhili
    Yu, Jiguo
    Liu, Qi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (09): : 2092 - 2099
  • [28] Multi-model deep learning approach for collaborative filtering recommendation system
    Aljunid, Mohammed Fadhel
    Huchaiah, Manjaiah Doddaghatta
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2020, 5 (04) : 268 - 275
  • [29] A Content-Boosted Collaborative Filtering Approach for Movie Recommendation Based on Local and Global Similarity and Missing Data Prediction
    Ozbal, Gozde
    Karaman, Hilal
    Alpaslan, Ferda N.
    COMPUTER JOURNAL, 2011, 54 (09): : 1535 - 1546
  • [30] A Hybrid Approach of Recommendation via Extended Matrix Based on Collaborative Filtering with Demographics Information
    Valdiviezo-Diaz, Priscila
    Bobadilla, Jesus
    TECHNOLOGY TRENDS, 2019, 895 : 384 - 398