Concurrently improved strength-ductility synergy and strain-hardenability in metastable face-centered cubic high-entropy alloys through C-doping

被引:2
作者
Zhang, H. [1 ]
Xue, X. Y. [1 ]
Xue, M. J. [1 ]
Li, J. S. [1 ]
Lai, M. J. [1 ]
机构
[1] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2025年 / 926卷
基金
中国国家自然科学基金;
关键词
High entropy alloys; C; -doping; Mechanical properties; Transformation-induced plasticity; Twinning-induced plasticity; MECHANICAL-PROPERTIES; CARBON CONTENT; PLASTICITY; MICROSTRUCTURE; TRANSFORMATION; TEMPERATURE; MARTENSITE; MODEL; TWIP;
D O I
10.1016/j.msea.2025.147978
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We have demonstrated that 1 at.% C-doping enhances both the strength-ductility synergy and strainhardenability of the metastable face-centered cubic (fcc) single-phase Fe50Mn30Cr10Si10 high-entropy alloy (HEA), which exhibits transformation-induced plasticity (TRIP) effect. These enhancements result from interstitial solid solution hardening as well as a beneficial increase in fcc phase stability and stacking fault energy (SFE) due to C-doping. The increased phase stability and SFE activate deformation twinning and the formation of 9R structures, while preserving the TRIP effect. Our findings underscore C-doping as a promising strategy for designing novel high-performance metastable fcc single-phase HEAs.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Yield strength insensitivity in a dual-phase high entropy alloy after prolonged high temperature annealing [J].
Ahmed, Junaid ;
Daly, Matthew .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 820
[2]   Achieving superior combined cryogenic strength and ductility in a high-entropy alloy via the synergy of low stacking fault energy and multiscale heterostructure [J].
An, Zibing ;
Mao, Shengcheng ;
Jiang, Cheng ;
Li, Ziyao ;
Wu, Shichang ;
Zhai, Yadi ;
Wang, Li ;
Liu, Yinong ;
Zhang, Ze ;
Han, Xiaodong .
SCRIPTA MATERIALIA, 2024, 239
[3]   Microstructure-based model for the static mechanical behaviour of multiphase steels [J].
Bouquerel, J ;
Verbeken, K ;
de Cooman, BC .
ACTA MATERIALIA, 2006, 54 (06) :1443-1456
[4]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[5]   Effects of carbon addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy prepared by powder metallurgy [J].
Chen, Li ;
Li, Zhanjiang ;
Dai, Pinqiang ;
Fu, Peixin ;
Chen, Junfeng ;
Tang, Qunhua .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 :73-87
[6]   Prediction of the strain Hardening of TRIP/TWIP steels considering C contents [J].
Dan, WenJiao ;
Zhang, WeiGang ;
Huang, TingTing .
18TH INTERNATIONAL CONFERENCE ON METAL FORMING 2020, 2020, 50 :541-545
[7]   Design of a twinning-induced plasticity high entropy alloy [J].
Deng, Y. ;
Tasan, C. C. ;
Pradeep, K. G. ;
Springer, H. ;
Kostka, A. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 94 :124-133
[8]   High deformation ability induced by phase transformation through adjusting Cr content in Co-Fe-Ni-Cr high entropy alloys [J].
Gao, Xuefeng ;
Chen, Ruirun ;
Liu, Tong ;
Fang, Hongze ;
Wang, Liang ;
Su, Yanqing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 895
[9]   High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J].
George, E. P. ;
Curtin, W. A. ;
Tasan, C. C. .
ACTA MATERIALIA, 2020, 188 :435-474
[10]   Effect of carbon content on the mechanical properties and microstructural evolution of Fe-22Mn-C steels [J].
Ghasri-Khouzani, M. ;
McDermid, J. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 621 :118-127