Normalized solutions for a nonlinear Dirac equation

被引:0
作者
Zelati, Vittorio Coti [1 ]
Nolasco, Margherita [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat Pura & Appl R Caccioppoli, Via Cintia, I-80126 Naples, NA, Italy
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, AQ, Italy
关键词
Nonlinear Dirac equation; Critical point theory; Min-Max methods; Normalized solutions; CONCENTRATION-COMPACTNESS PRINCIPLE; STATIONARY STATES; EXISTENCE; CALCULUS;
D O I
10.1016/j.jde.2024.09.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a normalized, stationary solution psi : R-3 -> C-4 with frequency omega > 0 of the nonlinear Dirac equation. The result covers the case in which the nonlinearity is the gradient of a function of the form F(psi) = a|(psi, gamma(0) psi)|(alpha/2) + b |(psi, gamma(1) gamma(2) gamma(3) psi)|(alpha/2) with alpha is an element of (2, 8/3], b >= 0 and a > 0 sufficiently small. Here gamma(i), i = 0, ... , 3 are the 4 x 4 Dirac's matrices. We find the solution as a critical point of a suitable functional restricted to the unit sphere in L-2, and omega turns out to be the corresponding Lagrange multiplier. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license.
引用
收藏
页码:746 / 772
页数:27
相关论文
共 25 条
  • [1] Solutions of nonlinear Dirac equations
    Bartsch, Thomas
    Ding, Yanheng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (01) : 210 - 249
  • [2] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [3] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [4] MINIMAX CHARACTERIZATION OF SOLUTIONS FOR A SEMILINEAR ELLIPTIC EQUATION WITH LACK OF COMPACTNESS
    BUFFONI, B
    JEANJEAN, L
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (04): : 377 - 404
  • [5] Buffoni B, 2006, ADV NONLINEAR STUD, V6, P323
  • [6] ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS
    CAZENAVE, T
    LIONS, PL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) : 549 - 561
  • [7] Coti Zelati V., 2023, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., V34, P101
  • [8] Stationary states of nonlinear Dirac equations with general potentials
    Ding, Yanheng
    Wei, Juncheng
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (08) : 1007 - 1032
  • [9] Ding YH, 2023, J GEOM ANAL, V33, DOI 10.1007/s12220-022-01117-5
  • [10] Action versus energy ground states in nonlinear Schrodinger equations
    Dovetta, Simone
    Serra, Enrico
    Tilli, Paolo
    [J]. MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 1545 - 1576