HARMONIC MAP FLOW FOR ALMOST-HOLOMORPHIC MAPS

被引:0
作者
Song, Chong [1 ]
Waldron, Alex [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
COMPACT KAHLER-MANIFOLDS; HEAT-FLOW; BLOW-UP; SURFACES; ASYMPTOTICS; SINGULARITY; REGULARITY; EXISTENCE; MAPPINGS; DYNAMICS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma be a compact oriented surface and N a compact Kahler manifold with nonnegative holomorphic bisectional curvature. For a solution of harmonic map flow starting from an almost-holomorphic map Sigma -> N (in the energy sense), the limit at each singular time extends continuously over the bubble points and no necks appear.
引用
收藏
页码:1225 / 1268
页数:44
相关论文
共 50 条
[41]   Generalized Landau-Lifshitz systems and harmonic maps [J].
Guo, BL ;
Wang, YD .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (12) :1242-1257
[42]   HARMONIC MAPS DEFINED BY THE GEODESIC FLOW [J].
Abbassi, M. T. K. ;
Calvaruso, G. ;
Perrone, D. .
HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01) :69-90
[43]   ENTROPY, STABILITY AND HARMONIC MAP FLOW [J].
Boling, Jess ;
Kelleher, Casey ;
Streets, Jeffrey .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (08) :5769-5808
[44]   Heat flow for harmonic maps from graphs into Riemannian manifolds [J].
Baird, Paul ;
Fardoun, Ali ;
Regbaoui, Rachid .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 176
[45]   From the Q-Tensor Flow for the Liquid Crystal to the Harmonic Map Flow [J].
Wang, Meng ;
Wang, Wendong ;
Zhang, Zhifei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (02) :663-683
[46]   Asymptotic Stability, Concentration, and Oscillation in Harmonic Map Heat-Flow, Landau-Lifshitz, and Schrodinger Maps on R2 [J].
Gustafson, Stephen ;
Nakanishi, Kenji ;
Tsai, Tai-Peng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (01) :205-242
[47]   Two examples of harmonic maps into spheres [J].
Misawa, Masashi ;
Nakauchi, Nobumitsu .
ADVANCES IN GEOMETRY, 2022, 22 (01) :23-31
[48]   A Numerical Study of Blowup in the Harmonic Map Heat Flow Using the MMPDE Moving Mesh Method [J].
Haynes, Ronald D. ;
Huang, Weizhang ;
Zegeling, Paul A. .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (02) :364-383
[49]   Harmonic maps between surfaces homotopic to a (branched) covering map [J].
Kim, Inkang ;
Wan, Xueyuan .
MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (03)
[50]   A New Conformal Heat Flow of Harmonic Maps [J].
Woongbae Park .
The Journal of Geometric Analysis, 2023, 33