HARMONIC MAP FLOW FOR ALMOST-HOLOMORPHIC MAPS

被引:0
作者
Song, Chong [1 ]
Waldron, Alex [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
COMPACT KAHLER-MANIFOLDS; HEAT-FLOW; BLOW-UP; SURFACES; ASYMPTOTICS; SINGULARITY; REGULARITY; EXISTENCE; MAPPINGS; DYNAMICS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma be a compact oriented surface and N a compact Kahler manifold with nonnegative holomorphic bisectional curvature. For a solution of harmonic map flow starting from an almost-holomorphic map Sigma -> N (in the energy sense), the limit at each singular time extends continuously over the bubble points and no necks appear.
引用
收藏
页码:1225 / 1268
页数:44
相关论文
共 50 条
[31]   THE RADIUS OF VANISHING BUBBLES IN EQUIVARIANT HARMONIC MAP FLOW FROM D2 TO S2 [J].
Angenent, S. B. ;
Hulshof, J. ;
Matano, H. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :1121-1137
[32]   BLOW-UP FOR THE 3-DIMENSIONAL AXIALLY SYMMETRIC HARMONIC MAP FLOW INTO S2 [J].
Davila, Juan ;
Del Pino, Manuel ;
Pesce, Catalina ;
Wei, Juncheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (12) :6913-6943
[33]   Motion of Singularities in the Heat Flow of Harmonic Maps into a Sphere [J].
Luo, Chunmei ;
Zhang, Hui ;
Zhang, Zhengru .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) :580-600
[34]   Homotopy classes of harmonic maps of the stratified 2-spheres and applications to geometric flows [J].
Chen, Jingyi ;
Li, Yuxiang .
ADVANCES IN MATHEMATICS, 2014, 263 :357-388
[35]   Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data [J].
Wang, Changyou .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (01) :1-19
[36]   A global weak solution to the Lorentzian harmonic map flow [J].
Xiaoli Han ;
Lei Liu ;
Liang Zhao .
Science China Mathematics, 2020, 63 :155-166
[37]   A global weak solution to the Lorentzian harmonic map flow [J].
Xiaoli Han ;
Lei Liu ;
Liang Zhao .
ScienceChina(Mathematics), 2020, 63 (01) :155-166
[38]   Uniqueness and nonuniqueness of limits of Teichmuller harmonic map flow [J].
Kohout, James ;
Rupflin, Melanie ;
Topping, Peter M. .
ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (03) :369-384
[39]   Weak solutions for the time fractional harmonic map flow [J].
Chen, Yan-Hong ;
Zheng, Youquan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
[40]   UNIFORMITY OF HARMONIC MAP HEAT FLOW AT INFINITE TIME [J].
Lin, Longzhi .
ANALYSIS & PDE, 2013, 6 (08) :1899-1921