Machine learning-driven atomistic analysis of mechanical behavior in silicon nanowires

被引:0
作者
Pakzad, Sina Zare [1 ]
Esfahani, Mohammad Nasr [2 ]
Canadinc, Demircan [3 ]
Alaca, B. Erdem [1 ,4 ,5 ]
机构
[1] Koc Univ, Dept Mech Engn, Rumelifeneri Yolu, TR-34450 Istanbul, Turkiye
[2] Univ York, Sch Phys Engn & Technol, York YO10 5DD, England
[3] Koc Univ, Dept Mech Engn, Adv Mat Grp AMG, TR-34450 Istanbul, Turkiye
[4] Koc Univ, Nanofabricat & Nanocharacterizat Ctr Sci & Technol, n2STAR, Rumelifeneri Yolu, TR-34450 Istanbul, Turkiye
[5] Koc Univ, Koc Univ Surface Technol Res Ctr KUYTAM, TR-34450 Istanbul, Turkiye
关键词
Silicon nanowire; Molecular dynamics; Machine learning; Tensile behavior; Modulus of elasticity; MOLECULAR-DYNAMICS; ELASTIC PROPERTIES; SIMULATION;
D O I
10.1016/j.commatsci.2024.113446
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the modulus of elasticity of silicon nanowires using a combination of molecular dynamics simulations and machine learning techniques. The research presents a substantial dataset with over 3000 data points obtained from molecular dynamics simulations, which reveals detailed insights into the mechanical properties of silicon nanowires and underscores the importance of accurate model calibration. Machine learning surrogate models are employed to predict the elasticity of silicon nanowires, focusing on the influence of surface state and crystal orientation. By analyzing partial dependencies and using inverse pole figures, the study demonstrates that the modulus of elasticity exhibits significant orientation dependence. This work bridges computational and experimental approaches, offering a refined understanding of the mechanical behavior of silicon nanowires. The findings highlight the potential of integrating machine learning with atomistic simulations to improve the predictive accuracy of material properties, building the framework for advancements in nanoelectromechanical applications.
引用
收藏
页数:10
相关论文
共 64 条
  • [11] Gaussian Process Regression for Materials and Molecules
    Deringer, Volker L.
    Bartok, Albert P.
    Bernstein, Noam
    Wilkins, David M.
    Ceriotti, Michele
    Csanyi, Gabor
    [J]. CHEMICAL REVIEWS, 2021, 121 (16) : 10073 - 10141
  • [12] Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics
    Deringer, Volker L.
    Bernstein, Noam
    Bartok, Albert P.
    Cliffe, Matthew J.
    Kerber, Rachel N.
    Marbella, Lauren E.
    Grey, Clare P.
    Elliott, Stephen R.
    Csanyi, Gabor
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (11): : 2879 - 2885
  • [13] LAMMPS implementation of rapid artificial neural network derived interatomic potentials
    Dickel, D.
    Nitol, M.
    Barrett, C. D.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 196
  • [14] Erhard LC, 2023, Arxiv, DOI arXiv:2309.03587
  • [15] Effect of Native Oxide on Stress in Silicon Nanowires: Implications for Nanoelectromechanical Systems
    Esfahani, Mohammad Nasr
    Pakzad, Sina Zare
    Li, Taotao
    Li, XueFei
    Tasdemir, Zuhal
    Wollschlaeger, Nicole
    Leblebici, Yusuf
    Alaca, B. Erdem
    [J]. ACS APPLIED NANO MATERIALS, 2022, : 13276 - 13285
  • [16] A Review on Size-Dependent Mechanical Properties of Nanowires
    Esfahani, Mohammad Nasr
    Alaca, Burhanettin Erdem
    [J]. ADVANCED ENGINEERING MATERIALS, 2019, 21 (08)
  • [17] Atomistic modeling of strain and diffusion at the Si/SiO2 interface
    Ganster, Patrick
    Treglia, Guy
    Saul, Andres
    [J]. PHYSICAL REVIEW B, 2010, 81 (04):
  • [18] Catalyst-free synthesis of sub-5 nm silicon nanowire arrays with massive lattice contraction and wide bandgap
    Gao, Sen
    Hong, Sanghyun
    Park, Soohyung
    Jung, Hyun Young
    Liang, Wentao
    Lee, Yonghee
    Ahn, Chi Won
    Byun, Ji Young
    Seo, Juyeon
    Hahm, Myung Gwan
    Kim, Hyehee
    Kim, Kiwoong
    Yi, Yeonjin
    Wang, Hailong
    Upmanyu, Moneesh
    Lee, Sung-Goo
    Homma, Yoshikazu
    Terrones, Humberto
    Jung, Yung Joon
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [19] Machine learning as a tool to design glasses with controlled dissolution for healthcare applications
    Han, Taihao
    Stone-Weiss, Nicholas
    Huang, Jie
    Goel, Ashutosh
    Kumar, Aditya
    [J]. ACTA BIOMATERIALIA, 2020, 107 : 286 - 298
  • [20] A novel pole figure inversion method: specification of the MTEX algorithm
    Hielscher, R.
    Schaeben, H.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2008, 41 : 1024 - 1037