Machine learning-driven atomistic analysis of mechanical behavior in silicon nanowires

被引:0
作者
Pakzad, Sina Zare [1 ]
Esfahani, Mohammad Nasr [2 ]
Canadinc, Demircan [3 ]
Alaca, B. Erdem [1 ,4 ,5 ]
机构
[1] Koc Univ, Dept Mech Engn, Rumelifeneri Yolu, TR-34450 Istanbul, Turkiye
[2] Univ York, Sch Phys Engn & Technol, York YO10 5DD, England
[3] Koc Univ, Dept Mech Engn, Adv Mat Grp AMG, TR-34450 Istanbul, Turkiye
[4] Koc Univ, Nanofabricat & Nanocharacterizat Ctr Sci & Technol, n2STAR, Rumelifeneri Yolu, TR-34450 Istanbul, Turkiye
[5] Koc Univ, Koc Univ Surface Technol Res Ctr KUYTAM, TR-34450 Istanbul, Turkiye
关键词
Silicon nanowire; Molecular dynamics; Machine learning; Tensile behavior; Modulus of elasticity; MOLECULAR-DYNAMICS; ELASTIC PROPERTIES; SIMULATION;
D O I
10.1016/j.commatsci.2024.113446
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the modulus of elasticity of silicon nanowires using a combination of molecular dynamics simulations and machine learning techniques. The research presents a substantial dataset with over 3000 data points obtained from molecular dynamics simulations, which reveals detailed insights into the mechanical properties of silicon nanowires and underscores the importance of accurate model calibration. Machine learning surrogate models are employed to predict the elasticity of silicon nanowires, focusing on the influence of surface state and crystal orientation. By analyzing partial dependencies and using inverse pole figures, the study demonstrates that the modulus of elasticity exhibits significant orientation dependence. This work bridges computational and experimental approaches, offering a refined understanding of the mechanical behavior of silicon nanowires. The findings highlight the potential of integrating machine learning with atomistic simulations to improve the predictive accuracy of material properties, building the framework for advancements in nanoelectromechanical applications.
引用
收藏
页数:10
相关论文
共 64 条
  • [1] Influence of vacuum annealing on mechanical characteristics of focused ion beam fabricated silicon nanowires
    Ando, Hiromichi
    Namazu, Takahiro
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2023, 41 (06):
  • [2] Empirical characterization of random forest variable importance measures
    Archer, Kelfie J.
    Kirnes, Ryan V.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) : 2249 - 2260
  • [3] Mesoscopic physics of nanomechanical systems
    Bachtold, Adrian
    Moser, Joel
    Dykman, M. I.
    [J]. REVIEWS OF MODERN PHYSICS, 2022, 94 (04)
  • [4] Machine Learning a General-Purpose Interatomic Potential for Silicon
    Bartok, Albert P.
    Kermode, James
    Bernstein, Noam
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW X, 2018, 8 (04):
  • [5] Optical Properties of Individual Silicon Nanowires for Photonic Devices
    Broenstrup, Gerald
    Jahr, Norbert
    Leiterer, Christian
    Csaki, Andrea
    Fritzsche, Wolfgang
    Christiansen, Silke
    [J]. ACS NANO, 2010, 4 (12) : 7113 - 7122
  • [6] Machine learning for molecular and materials science
    Butler, Keith T.
    Davies, Daniel W.
    Cartwright, Hugh
    Isayev, Olexandr
    Walsh, Aron
    [J]. NATURE, 2018, 559 (7715) : 547 - 555
  • [7] Machine learning assisted design of novel refractory high entropy alloys with enhanced mechanical properties
    Catal, A. A.
    Bedir, E.
    Yilmaz, R.
    Swider, M. A.
    Lee, C.
    El-Atwani, O.
    Maier, H. J.
    Ozdemir, H. C.
    Canadinc, D.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2024, 231
  • [8] Stress calculation in atomistic simulations of perfect and imperfect solids
    Cormier, J
    Rickman, JM
    Delph, TJ
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 89 (01) : 99 - 104
  • [9] Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
  • [10] Machine Learning Interatomic Potentials as Emerging Tools for Materials Science
    Deringer, Volker L.
    Caro, Miguel A.
    Csanyi, Gabor
    [J]. ADVANCED MATERIALS, 2019, 31 (46)