Dense Information Learning Based Semi-Supervised Object Detection

被引:1
作者
Yang, Xi [1 ]
Li, Penghui [2 ]
Zhou, Qiubai [1 ]
Wang, Nannan [1 ]
Gao, Xinbo [3 ,4 ]
机构
[1] Xidian Univ, Xian 710071, Peoples R China
[2] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311231, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Image Cognit, Chongqing 400065, Peoples R China
[4] Xidian Univ, Sch Elect Engn, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Training; Semisupervised learning; Perturbation methods; Detectors; Data models; Accuracy; Location awareness; Feature extraction; Electronics packaging; Dense information learning; relation consistency regularization; semi-supervised learning; object detection;
D O I
10.1109/TIP.2025.3530786
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-Supervised Object Detection (SSOD) aims to improve the utilization of unlabeled data, and various methods, such as adaptive threshold techniques, have been extensively studied to increase exploitable information. However, these methods are passive, relying solely on the original image data. Additionally, existing approaches prioritize the predicted categories of the teacher model while overlooking the relationships between different categories in the prediction. In this paper, we introduce a novel approach called Dense Information Learning (DIL), which actively generates unlabeled data containing densely exploitable information and forces the network to have relation consistency under different perturbations. Specifically, Dense Information Augmentation (DIA) leverages the prior information of the network to create a foreground bank and actively incorporates exploitable information into the unlabeled data. DIA automatically performs information enhancement and filters noise. Furthermore, to encourage the network to maintain consistency at the manifold level under various perturbations, we introduce Relation Consistency Regularization (RCR). It considers both feature-level and image-level perturbations, guiding the network to focus on more discriminative features. Extensive experiments conducted on multiple datasets validate the effectiveness of our approach in leveraging information from unlabeled images. The proposed DIL improves the mAP by 12.6% and 10.0% relative to the supervised baseline method when utilizing 5% and 10% of labeled data on the MS-COCO dataset, respectively.
引用
收藏
页码:1022 / 1035
页数:14
相关论文
共 56 条
[1]  
Berthelot D, 2019, ADV NEUR IN, V32
[2]  
Berthelot David., 2019, arXiv
[3]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
[4]  
Bodla N., arXiv, P2688
[5]   Dense Learning based Semi-Supervised Object Detection [J].
Chen, Binghui ;
Li, Pengyu ;
Chen, Xiang ;
Wang, Biao ;
Zhang, Lei ;
Hua, Xian-Sheng .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :4805-4814
[6]   Semi-Supervised and Unsupervised Deep Visual Learning: A Survey [J].
Chen, Yanbei ;
Mancini, Massimiliano ;
Zhu, Xiatian ;
Akata, Zeynep .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) :1327-1347
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[9]   Conservative-Progressive Collaborative Learning for Semi-Supervised Semantic Segmentation [J].
Fan S. ;
Zhu F. ;
Feng Z. ;
Lv Y. ;
Song M. ;
Wang F.-Y. .
IEEE Transactions on Image Processing, 2023, 32 :6183-6194
[10]   Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation [J].
Ghiasi, Golnaz ;
Cui, Yin ;
Srinivas, Aravind ;
Qian, Rui ;
Lin, Tsung-Yi ;
Cubuk, Ekin D. ;
Le, Quoc, V ;
Zoph, Barret .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2917-2927