Critical behavior of rumor propagation on random networks of cliques

被引:0
作者
Sobehart, Lucas A. [1 ,2 ]
Zanette, Damian H. [1 ,2 ,3 ]
机构
[1] Univ Nacl Cuyo, Ctr Atom Bariloche, Av Ezequiel Bustillo 9500, RA-8400 San Carlos De Bariloche, Argentina
[2] Univ Nacl Cuyo, Inst Balseiro, Comision Nacl Energia Atom, Av Ezequiel Bustillo 9500, RA-8400 San Carlos de Bariloche, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
关键词
DYNAMICS;
D O I
10.4279/PIP.160003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We disclose a critical phenomenon induced by structural properties of the contact pattern in a stylized model of rumor propagation over a population of agents. The contact pattern is given by a random network of cliques, formed by fully interconnected groups of nodes of identical size with randomly distributed connections between groups. As demonstrated numerically using finite-size scaling analysis, the process exhibits a critical transition between a regime where the rumor remains confined to a negligible part of the population and a regime where it attains a finite portion of the system. We determine the critical point and the critical exponent of the transition for different clique sizes. The phenomenon is analogous to that observed for the same kind of process in Watts-Strogatz small-world networks, and is likely due to the combination of large clustering and short mean geodesic distances that also characterizes random networks of cliques.
引用
收藏
页数:9
相关论文
共 36 条
  • [21] Pascual M, 2006
  • [22] Epidemic spreading in scale-free networks
    Pastor-Satorras, R
    Vespignani, A
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (14) : 3200 - 3203
  • [23] Epidemic processes in complex networks
    Pastor-Satorras, Romualdo
    Castellano, Claudio
    Van Mieghem, Piet
    Vespignani, Alessandro
    [J]. REVIEWS OF MODERN PHYSICS, 2015, 87 (03) : 925 - 979
  • [24] How Structure Determines Correlations in Neuronal Networks
    Pernice, Volker
    Staude, Benjamin
    Cardanobile, Stefano
    Rotter, Stefan
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (05)
  • [25] Hierarchical organization of modularity in metabolic networks
    Ravasz, E
    Somera, AL
    Mongru, DA
    Oltvai, ZN
    Barabási, AL
    [J]. SCIENCE, 2002, 297 (5586) : 1551 - 1555
  • [26] Schiesser WE, 2018, Mathematical Modeling Approach To Infectious Diseases, A: Cross Diffusion PDE Models For Epidemiology
  • [27] Structural properties of random networks of cliques
    Sobehart, Lucas A.
    Alcala, Samuel Martinez
    Chacoma, Andres
    Zanette, Damian H.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 624
  • [28] THE PROPORTION OF THE POPULATION NEVER HEARING A RUMOR
    SUDBURY, A
    [J]. JOURNAL OF APPLIED PROBABILITY, 1985, 22 (02) : 443 - 446
  • [29] Beyond Statistical Significance: Implications of Network Structure on Neuronal Activity
    Vlachos, Ioannis
    Aertsen, Ad
    Kumar, Arvind
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (01)
  • [30] The Effects of Network Neighbours on Protein Evolution
    Wang, Guang-Zhong
    Lercher, Martin J.
    [J]. PLOS ONE, 2011, 6 (04):