Defossilisation of the industrial sector - A techno-economic bottom-up approach to determining CO2 abatement costs

被引:1
|
作者
Scharf, Hendrik [1 ]
Sauerbrey, Ole [1 ]
Moest, Dominik [1 ]
机构
[1] Tech Univ Dresden, Fac Business & Econ, Chair Energy Econ, D-01062 Dresden, Germany
来源
2022 18TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM | 2022年
关键词
Industrial production costs; Low-carbon production; CO2; intensity; Marginal abatement cost curves; Electrification;
D O I
10.1109/EEM54602.2022.9921043
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents an approach to determining carbon dioxide (CO2) abatement cost curves for industries based on techno-economic data and input-output analyses of conventional and low-carbon industrial production systems. Therefore, it outlines the determination of the fabrication costs and CO2 intensities of products by means of the example goods primary steel, methanol, and ammonia. By bringing together future marginal abatement costs of CO2 emissions from several industries, comparing the differences in specific production costs and CO2 intensities of the conventional means of production and the low-carbon alternative, a marginal abatement cost curve can be constructed to derive potential transformation paths for the industrial sector and facilitate the adoption of low-carbon technologies. Moreover, marginal abatement cost curves constitute a tool to derive future CO2 prices in a cap-and-trade system on the basis of fundamental data. The results show that even when incorporating learning curves of low-carbon technologies, none of the low-carbon production systems examined is likely to become cost-competitive with the conventional means without considering a CO2 price. Moreover, the results suggest that, regardless of the scenario and year under investigation, the abatement costs of ammonia production are the lowest among the goods considered, and methanol entails the highest abatement costs of CO2 emissions, while the abatement costs of primary steel are between those of ammonia and methanol. The method presented can be expanded to the industrial production of other goods. Further research could derive a merit order curve for the industrial sector to propose defossilisation paths under a diminishing sectoral CO2 budget over time.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Quantifying CO2 abatement costs in the power sector
    Van den Bergh, Kenneth
    Delarue, Erik
    ENERGY POLICY, 2015, 80 : 88 - 97
  • [2] Techno-economic assessment and comparison of CO2 capture technologies for industrial processes: preliminary results for the iron and steel sector
    Kuramochi, Takeshi
    Ramirez, Andrea
    Turkenburg, Wim
    Faaij, Andre
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1981 - 1988
  • [3] Techno-Economic Evaluation of Energy and CO2 Abatement Measures in Urban Environment: A Case Study in Malta
    Azzopardi, Brian
    Zammit, Matthew
    ENERGIES, 2024, 17 (02)
  • [4] Techno-Economic Assessment Guidelines for CO2 Utilization
    Zimmermann, Arno W.
    Wunderlich, Johannes
    Mueller, Leonard
    Buchner, Georg A.
    Marxen, Annika
    Michailos, Stavros
    Armstrong, Katy
    Naims, Henriette
    McCord, Stephen
    Styring, Peter
    Sick, Volker
    Schomaecker, Reinhard
    FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08):
  • [5] Techno-economic assessment of CO2 liquefaction for ship transportation
    Zahid, Umer
    An, Jinjoo
    Lee, Ung
    Choi, Seung Phill
    Han, Chonghun
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2014, 4 (06): : 734 - 749
  • [6] Abatement costs of CO2 emissions in the Brazilian oil refining sector
    Castelo Branco, David A.
    Szklo, Alexandre
    Gomes, Gabriel
    Borba, Bruno S. M. C.
    Schaeffer, Roberto
    APPLIED ENERGY, 2011, 88 (11) : 3782 - 3790
  • [7] A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport
    Knoope, M. M. J.
    Ramirez, A.
    Faaij, A. P. C.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 16 : 241 - 270
  • [8] Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis
    Wang Xintian
    Li Pan
    Cao Yue
    Hong Wenhao
    Geng Zhongxuan
    An Zhiyang
    Wang Haoyu
    Wang Hua
    Sun Bin
    Zhu Wenlei
    Zhou Yang
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (09):
  • [9] Techno-Economic Assessment of Different Heat Exchangers for CO2 Capture
    Aromada, Solomon Aforkoghene
    Eldrup, Nils Henrik
    Normann, Fredrik
    Oi, Lars Erik
    ENERGIES, 2020, 13 (23)
  • [10] CO2 Utilization Pathways: Techno-Economic Assessment and Market Opportunities
    Perez-Fortes, Mar
    Bocin-Dumitriu, Andrei
    Tzimas, Evangelos
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 7968 - 7975