AI-enabled construction and prediction of atomic models for thin-film heterostructures via materials genome approach

被引:0
作者
Yu, Cheng-Lung [1 ]
Dai, Jia-Wei [1 ]
Wang, Tzu-Wei [1 ]
Fu, Jine-Du [2 ]
Liu, Po-Liang [1 ,3 ]
机构
[1] Natl Chung Hsing Univ, Grad Inst Precis Engn, 145 Xingda Rd, Taichung 40227, Taiwan
[2] Max Vantage WH Co Ltd, 7F-2,936,Sec 4,Taiwan Blvd, Taichung 40764, Taiwan
[3] Natl Chi Nan Univ, Dept Appl Mat & Optoelect Engn, 1 Univ Rd, Nantou 54561, Taiwan
关键词
Artificial intelligence; Heterostructures; GaN; Muscovite; And Van der Waals epitaxy; HETEROEPITAXY;
D O I
10.1016/j.surfcoat.2025.131755
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study leverages an Artificial Intelligence-enabled materials genome approach to predict and analyze atomic models for thin-film heterostructures. A novel computational strategy was employed to investigate the structural and electronic properties of wurtzite Gallium Nitride thin films grown on flexible muscovite mica substrates. Among the configurations studied, the N-polar GaN/K-terminated Muscovite model was the most stable, exhibiting the lowest interface energy of -0.281 eV/& Aring;2. This result aligns closely with experimental observations, wherein N-polar GaN formation is favored under nitrogen-rich growth conditions. Our findings demonstrate the efficacy of combining Artificial Intelligence with the materials genome approach to accurately predict interfacial energies and optimize heterostructure designs. This innovation accelerates the discovery of advanced materials and paves the way for breakthroughs in optoelectronics and related technologies by enabling precise and efficient structural analysis.
引用
收藏
页数:10
相关论文
共 20 条
  • [1] New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
    Belsky, A
    Hellenbrandt, M
    Karen, VL
    Luksch, P
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 : 364 - 369
  • [2] Bitla Y, 2017, FLATCHEM, V3, P26, DOI 10.1016/j.flatc.2017.06.003
  • [3] CIF2Cell: Generating geometries for electronic structure programs
    Bjorkman, Torbjorn
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (05) : 1183 - 1186
  • [4] Polymers for flexible displays: From material selection to device applications
    Choi, Myeon-Cheon
    Kim, Youngkyoo
    Ha, Chang-Sik
    [J]. PROGRESS IN POLYMER SCIENCE, 2008, 33 (06) : 581 - 630
  • [5] Cros A., 2021, Conference Proceedings
  • [6] Dai J.-W., 2022, 3 INT S PREC ENG 202
  • [7] Investigating the deformation mechanisms of a highly metastable high entropy alloy using in-situ neutron diffraction
    Frank, M.
    Chen, Y.
    Nene, S. S.
    Sinha, S.
    Liu, K.
    An, K.
    Mishra, R. S.
    [J]. MATERIALS TODAY COMMUNICATIONS, 2020, 23
  • [8] THE CRYSTALLOGRAPHIC INFORMATION FILE (CIF) - A NEW STANDARD ARCHIVE FILE FOR CRYSTALLOGRAPHY
    HALL, SR
    ALLEN, FH
    BROWN, ID
    [J]. ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 : 655 - 685
  • [9] A validating CIF parser:: PyCIFRW
    Hester, J. R.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2006, 39 : 621 - 625
  • [10] Flexible ferroelectric element based on van der Waals heteroepitaxy
    Jiang, Jie
    Bitla, Yugandhar
    Huang, Chun-Wei
    Thi Hien Do
    Liu, Heng-Jui
    Hsieh, Ying-Hui
    Ma, Chun-Hao
    Jang, Chi-Yuan
    Lai, Yu-Hong
    Chiu, Po-Wen
    Wu, Wen-Wei
    Chen, Yi-Chun
    Zhou, Yi-Chun
    Chu, Ying-Hao
    [J]. SCIENCE ADVANCES, 2017, 3 (06):