The transcription factor TaWHY2-6A acts as a positive regulator in response to drought tolerance in transgenic plants

被引:0
作者
Yu, Yang [1 ,2 ,3 ,4 ]
Wang, Conglei [1 ]
Zhang, Xiao [1 ]
Wang, Jianhe [1 ]
Li, Mengting [3 ]
Song, Tianqi [4 ]
Liang, Dan [1 ,2 ]
Feng, Gang [1 ]
机构
[1] Tianjin Acad Agr Sci, Tianjin 300192, Peoples R China
[2] Tianjin Crop Res Inst, Key Lab Crop Genet & Breeding, Tianjin 300192, Peoples R China
[3] Minist Agr & Rural Affairs, Inst Agroenvironm Protect, Tianjin 300191, Peoples R China
[4] Northwest Agr & Forestry Univ, Coll Agron, Xianyang 712100, Peoples R China
关键词
Wheat; WHY; Drought stress; Drought-resistant breeding; ARABIDOPSIS; RESISTANCE; LEAF;
D O I
10.1016/j.bbrc.2025.151580
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drought stress severely affects wheat yield, and Whirly (WHY) transcription factors (TFs) are essential in modulating plant tolerance to abiotic stresses. In this study, we identified six WHY members in the wheat wholegenome database, categorized into Group I and Group II, with three homologous WHY genes in each group. From the four selected drought-responsive candidate genes with upregulated expression, we focused on TaWHY2-6A, which was significantly upregulated under drought stress. Under drought conditions, TaWHY2-6A transgenic Arabidopsis exhibited significantly higher chlorophyll content and better growth status compared to wild-type (WT) plants, indicating that TaWHY2-6A enhances drought resistance in transgenic Arabidopsis. In contrast, wheat lines with silenced-TaWHY2-6A exhibited a more severe wilting phenotype following drought treatment, accompanied by elevated levels of H2O2 and O2.-, and reduced antioxidant enzyme activity. These findings suggest that the wheat TaWHY2-6A gene positively regulates drought resistance under drought stress. This research provides a theoretical basis and valuable genetic resources for drought-resistance breeding in wheat.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Zinc finger transcription factor induces the drought, salt and cold stress tolerance in transgenic cotton
    Iqbal, Fozia
    Sadique, Sajjad
    Batool, Fatima
    Sarwar, Muhammad Bilal
    Rashid, Bushra
    Shahid, Muhammad Naveed
    Shahid, Ahmad Ali
    Husnain, Tayyab
    INDIAN JOURNAL OF BIOTECHNOLOGY, 2017, 16 (03): : 333 - 340
  • [32] Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis
    Mei, Fangming
    Chen, Bin
    Li, Fangfang
    Zhang, Yifang
    Kang, Zhensheng
    Wang, Xiaojing
    Mao, Hude
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 160 : 37 - 50
  • [33] Membrane-bound transcription factor TaNTL1 positively regulates drought stress tolerance in transgenic Arabidopsis
    Sun, Huimin
    Xie, Yanzhou
    Yang, Weibing
    Lv, Qian
    Chen, Liuping
    Li, Jiatao
    Meng, Ying
    Li, Liqun
    Li, Xuejun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 182 : 182 - 193
  • [34] Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat
    Liu, Hao
    Yang, Ying
    Liu, Dandan
    Wang, Xiaoyu
    Zhang, Linsheng
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [35] A bHLH transcription factor from Chenopodium glaucum confers drought tolerance to transgenic maize by positive regulation of morphological and physiological performances and stress-responsive genes' expressions
    Zhao, Haiju
    Wang, Changhai
    Lan, Haiyan
    MOLECULAR BREEDING, 2021, 41 (12)
  • [36] A moso bamboo transcription factor, Phehdz1, positively regulates the drought stress response of transgenic rice
    Gao, Yameng
    Liu, Huanlong
    Zhang, Kaimei
    Li, Fei
    Wu, Min
    Xiang, Yan
    PLANT CELL REPORTS, 2021, 40 (01) : 187 - 204
  • [37] Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana
    Jin, Xiaofeng
    Xue, Yong
    Wang, Ren
    Xu, RanRan
    Bian, Lin
    Zhu, Bo
    Han, Hongjuan
    Peng, Rihe
    Yao, Quanhong
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (02) : 1743 - 1752
  • [38] NAC domain transcription factor gene GhNAC3 confers drought tolerance in plants
    Xia, Linjie
    Sun, Simin
    Han, Bei
    Yang, Xiyan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 195 : 114 - 123
  • [39] Transcription factor NnDREB1 from lotus improved drought tolerance in transgenic Arabidopsis thaliana
    Cheng, L. B.
    Yang, J. J.
    Yin, L.
    Hui, L. C.
    Qian, H. M.
    Li, S. -Y.
    Li, L. -J.
    BIOLOGIA PLANTARUM, 2017, 61 (04) : 651 - 658
  • [40] Multiple roles of wheat calmodulin genes during stress treatment and TaCAM2-D as a positive regulator in response to drought and salt tolerance
    Li, Yaqian
    Zhang, Huadong
    Dong, Feiyan
    Zou, Juan
    Gao, Chunbao
    Zhu, Zhanwang
    Liu, Yike
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 220 : 985 - 997