Asset allocation with recursive parameter updating and macroeconomic regime identifiers

被引:0
作者
Goodarzi, Milad [1 ,2 ]
Meinerding, Christoph [3 ]
机构
[1] Goethe Univ Frankfurt, Frankfurt, Germany
[2] Allianz Global Investors, Frankfurt, Germany
[3] Deutsch Bundesbank, Res Ctr, Frankfurt, Germany
关键词
Regime switching models; asset allocation; macro-based portfolio strategies; parameter updating; G11; D83; E44; TERM STRUCTURE; GENERAL EQUILIBRIUM; RISK; CONSUMPTION; EXPECTATIONS; HYPOTHESIS; INFLATION; FORECAST; RETURNS; MODELS;
D O I
10.1080/1351847X.2025.2465453
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This article studies long-horizon dynamic asset allocation strategies with recursive parameter updating. The parameter estimates for the regime-switching dynamics vary as more and more datapoints are observed and the sample size increases. In such a setting, the globally optimal portfolio strategy cannot be determined due to computational complexity. Among a set of suboptimal strategies, the portfolio performance can be improved substantially if the dynamics of the regimes are estimated from fundamental macroeconomic data instead of financial return data. Especially after highly uncertain times like the burst of the dotcom bubble or the 2008 financial crisis, the estimation based on financial market data identifies extreme regimes, leading to very extreme hedging demands against regime changes.
引用
收藏
页数:27
相关论文
共 60 条