Finite Markov chains and multiple orthogonal polynomials

被引:2
作者
Branquinho, Amilcar [1 ]
Diaz, Juan E. F. [2 ]
Foulquie-Moreno, Ana [2 ]
Manas, Manuel [3 ]
机构
[1] Univ Coimbra, Dept Matemat, CMUC, P-3001454 Coimbra, Portugal
[2] Univ Aveiro, Dept Matemat, CIDMA, P-3810193 Aveiro, Portugal
[3] Univ Complutense Madrid, Dept Fis Teor, Plaza Ciencias 1, Madrid 28040, Spain
关键词
Multiple orthogonal polynomials; Hypergeometric series; Hessenberg matrices; Recursion matrix; Markov chains; Stochastic matrices; Classes; Recurrence; Stationary states; Ergodicity; Expected return times; Hahn; Laguerre; Meixner; Jacobi-Pi & ntilde; eiro; AT systems; RANDOM-WALK; MODEL;
D O I
10.1016/j.cam.2024.116485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates stochastic finite matrices and the corresponding finite Markov chains constructed using recurrence matrices for general families of orthogonal polynomials and multiple orthogonal polynomials. The paper explores the spectral theory of transition matrices, using both orthogonal and multiple orthogonal polynomials. Several properties are derived, including classes, periodicity, recurrence, stationary states, ergodicity, expected recurrence times, time-reversed chains, and reversibility. Furthermore, the paper uncovers factorization in terms of pure birth and pure death processes. The case study focuses on hypergeometric representations of orthogonal polynomials, where all the computations can be carried out effectively. Particularly within the Askey scheme, all descendants under Hahn such as Hahn itself, Jacobi, Meixner, Kravchuk, Laguerre, Charlier, and Hermite, present interesting examples of recurrent reversible birth and death finite Markov chains. Additionally, the paper considers multiple orthogonal polynomials, including multiple Hahn, Jacobi-Pi & ntilde;eiro, Laguerre of the first kind, and Meixner of the second kind, along with their hypergeometric representations and derives the corresponding recurrent finite Markov chains and time-reversed chains. A Mathematica code, publicly accessible in repositories, has been crafted to analyze various features within finite Markov chains.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials
    Aptekarev, A. I.
    Lysov, V. G.
    Tulyakov, D. N.
    [J]. SBORNIK MATHEMATICS, 2011, 202 (02) : 155 - 206
  • [42] Jacobi–Piñeiro Markov chains
    Amílcar Branquinho
    Juan E. F. Díaz
    Ana Foulquié-Moreno
    Manuel Mañas
    Carlos Álvarez-Fernández
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118
  • [43] Jacobi-Pineiro Markov chains
    Branquinho, Amilcar
    Diaz, Juan E. F.
    Foulquie-Moreno, Ana
    Manas, Manuel
    Alvarez-Fernandez, Carlos
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)
  • [44] Finite horizon analysis of Markov Chains with the Mur verifier
    Della Penna G.
    Intrigila B.
    Melatti I.
    Tronci E.
    Zilli M.V.
    [J]. International Journal on Software Tools for Technology Transfer, 2006, 8 (4-5) : 397 - 409
  • [45] OPTIMIZATION WITH CONSTRAINTS ON FINITE HOMOGENEOUS MARKOV CHAINS.
    Sragovich, V.G.
    [J]. 1600, (23):
  • [46] Statistical inference for finite Markov chains based on divergences
    Menendez, ML
    Morales, D
    Pardo, L
    Zografos, K
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 41 (01) : 9 - 17
  • [47] UPPER BOUNDS ON MIXING TIME OF FINITE MARKOV CHAINS
    Rhodes, John
    Schilling, Anne
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (04) : 3031 - 3057
  • [48] Simulation of Tennis Behaviour Using Finite Markov Chains
    Rothe, F.
    Lames, M.
    [J]. IFAC PAPERSONLINE, 2022, 55 (20): : 606 - 611
  • [49] A solution to the reversible embedding problem for finite Markov chains
    Jia, Chen
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 116 : 122 - 130
  • [50] ASYMPTOTIC BOOTSTRAP VALIDITY FOR FINITE MARKOV-CHAINS
    BASAWA, IV
    GREEN, TA
    MCCORMICK, WP
    TAYLOR, RL
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (04) : 1493 - 1510