EXTENDED AFFINE LIE ALGEBRAS, AFFINE VERTEX ALGEBRAS, AND GENERAL LINEAR GROUPS

被引:0
作者
Chen, Fulin [1 ]
Li, Haisheng [2 ]
Tan, Shaobin [1 ]
Wang, Qing [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
关键词
LEVEL-RANK DUALITY; INTEGRABLE REPRESENTATIONS; OPERATOR-ALGEBRAS; QUASI-MODULES; CONSTRUCTION; REALIZATION;
D O I
10.1090/ert/686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore natural connections among the representations of the extended affine Lie algebra slN(Cq) with Cq=Cq[t0 +/- 1,t1 +/- 1] an irrational quantum 2-torus, the simple affine vertex algebra Lsl infinity(l,0) with l a positive integer, and Levi subgroups GLI of GLl(C). First, we give a canonical isomorphism between the category of integrable restricted slN(Cq)-modules of level l and that of equivariant quasi Lsl infinity(l,0)-modules. Second, we classify irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules. Third, we establish a duality between irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules and irreducible regular GLI-modules on certain fermionic Fock spaces. Fourth, we obtain an explicit realization of every irreducible N-graded equivariant quasi Lsl infinity(l,0)-module. Fifth, we completely determine the following branchings: (i) The branching from Lsl infinity(l,0)circle times Lsl infinity(l ',0) to Lsl infinity(l+l ',0) for quasi modules. (ii) The branching from slN(Cq) to its Levi subalgebras. (iii) The branching from slN(Cq) to its subalgebras slN(Cq[t0 +/- M0,t1 +/- M1]).
引用
收藏
页码:60 / 107
页数:48
相关论文
共 50 条
[41]   Schur-Weyl dualities for shifted quantum affine algebras and Ariki-Koike algebras [J].
Wada, Kentaro .
JOURNAL OF ALGEBRA, 2024, 654 :132-188
[42]   Irreducible modules of toroidal Lie algebras arising from f?-coordinated modules of vertex algebras [J].
Chen, Fulin ;
Li, Huansheng ;
Yu, Nina .
JOURNAL OF ALGEBRA, 2022, 611 :110-148
[43]   On deformations of C*-algebras by actions of Kahlerian Lie groups [J].
Bieliavsky, Pierre ;
Gayral, Victor ;
Neshveyev, Sergey ;
Tuset, Lars .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (03)
[44]   Classification of Quasi-Finite Irreducible Modules over Affine Virasoro Algebras [J].
Liu, Dong ;
Pei, Yufeng ;
Xia, Limeng .
JOURNAL OF LIE THEORY, 2021, 31 (02) :575-582
[45]   THE GENERAL LINEAR GROUP AS A COMPLETE INVARIANT FOR C*-ALGEBRAS [J].
Giordano, Thierry ;
Sierakowski, Adam .
JOURNAL OF OPERATOR THEORY, 2016, 76 (02) :249-269
[46]   Automorphism Groups and Uniqueness of Holomorphic Vertex Operator Algebras of Central Charge 24 [J].
Betsumiya, Koichi ;
Lam, Ching Hung ;
Shimakura, Hiroki .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (03) :1773-1810
[47]   Limits of Multiplicities in Excellent Filtrations and Tensor Product Decompositions for Affine Kac-Moody Algebras [J].
Jakelic, Dijana ;
Moura, Adriano .
ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (01) :239-258
[48]   Limits of Multiplicities in Excellent Filtrations and Tensor Product Decompositions for Affine Kac-Moody Algebras [J].
Dijana Jakelić ;
Adriano Moura .
Algebras and Representation Theory, 2018, 21 :239-258
[49]   On deformations of C*-algebras by actions of Kahlerian Lie groups (vol 27, 1650023, 2016) [J].
Bieliavsky, Pierre ;
Gayral, Victor ;
Neshveyev, Sergey ;
Tuset, Lars .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (11)
[50]   Automorphism groups of cyclic orbifold vertex operator algebras associated with the Leech lattice and some non-prime isometries [J].
Betsumiya, Koichi ;
Lam, Ching Hung ;
Shimakura, Hiroki .
ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (02) :621-650