EXTENDED AFFINE LIE ALGEBRAS, AFFINE VERTEX ALGEBRAS, AND GENERAL LINEAR GROUPS

被引:0
作者
Chen, Fulin [1 ]
Li, Haisheng [2 ]
Tan, Shaobin [1 ]
Wang, Qing [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
关键词
LEVEL-RANK DUALITY; INTEGRABLE REPRESENTATIONS; OPERATOR-ALGEBRAS; QUASI-MODULES; CONSTRUCTION; REALIZATION;
D O I
10.1090/ert/686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore natural connections among the representations of the extended affine Lie algebra slN(Cq) with Cq=Cq[t0 +/- 1,t1 +/- 1] an irrational quantum 2-torus, the simple affine vertex algebra Lsl infinity(l,0) with l a positive integer, and Levi subgroups GLI of GLl(C). First, we give a canonical isomorphism between the category of integrable restricted slN(Cq)-modules of level l and that of equivariant quasi Lsl infinity(l,0)-modules. Second, we classify irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules. Third, we establish a duality between irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules and irreducible regular GLI-modules on certain fermionic Fock spaces. Fourth, we obtain an explicit realization of every irreducible N-graded equivariant quasi Lsl infinity(l,0)-module. Fifth, we completely determine the following branchings: (i) The branching from Lsl infinity(l,0)circle times Lsl infinity(l ',0) to Lsl infinity(l+l ',0) for quasi modules. (ii) The branching from slN(Cq) to its Levi subalgebras. (iii) The branching from slN(Cq) to its subalgebras slN(Cq[t0 +/- M0,t1 +/- M1]).
引用
收藏
页码:60 / 107
页数:48
相关论文
共 50 条
[31]   Extended affine Lie superalgebras and their affinizations [J].
Azam, Saeid ;
Darehgazani, Abbas .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (07) :2549-2576
[32]   Orthogonal Toroidal Lie Algebras, Vertex Algebras and Skew Howe Duality [J].
Chen, Fulin ;
Huang, Xin ;
Tan, Shaobin .
JOURNAL OF LIE THEORY, 2022, 32 (02) :301-312
[33]   A REALIZATION APPROACH TO EXTENDED AFFINE LIE SUPERALGEBRAS [J].
Azam, Saeid ;
Darehgazani, Abbas .
OSAKA JOURNAL OF MATHEMATICS, 2023, 60 (03) :613-635
[34]   THE CORE OF A LOCALLY EXTENDED AFFINE LIE ALGEBRA [J].
Khalili, Valiollah .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) :3646-3661
[35]   Twisted Γ-Lie algebras and their vertex operator representations [J].
Chen, Fulin ;
Tan, Shaobin ;
Wang, Qing .
JOURNAL OF ALGEBRA, 2015, 442 :202-232
[36]   A unified construction of vertex algebras from infinite-dimensional Lie algebras [J].
Chen, Fulin ;
Liao, Xiaoling ;
Tan, Shaobin ;
Wang, Qing .
ISRAEL JOURNAL OF MATHEMATICS, 2025,
[37]   Coproduct for Yangians of affine Kac-Moody algebras [J].
Guay, Nicolas ;
Nakajima, Hiraku ;
Wendlandt, Curtis .
ADVANCES IN MATHEMATICS, 2018, 338 :865-911
[38]   New representations of affine Kac-Moody algebras [J].
Cai, Yan-An ;
Tan, Haijun ;
Zhao, Kaiming .
JOURNAL OF ALGEBRA, 2020, 547 :95-115
[39]   Crystal bases for quantum affine algebras and Young walls [J].
Kang, Seok-Jin ;
Lee, Hyeonmi .
JOURNAL OF ALGEBRA, 2009, 322 (06) :1979-1999
[40]   Research topics in finite groups and vertex algebras [J].
Griess, Robert L., Jr. .
VERTEX OPERATOR ALGEBRAS, NUMBER THEORY AND RELATED TOPICS, 2020, 753 :119-126