EXTENDED AFFINE LIE ALGEBRAS, AFFINE VERTEX ALGEBRAS, AND GENERAL LINEAR GROUPS

被引:0
作者
Chen, Fulin [1 ]
Li, Haisheng [2 ]
Tan, Shaobin [1 ]
Wang, Qing [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
关键词
LEVEL-RANK DUALITY; INTEGRABLE REPRESENTATIONS; OPERATOR-ALGEBRAS; QUASI-MODULES; CONSTRUCTION; REALIZATION;
D O I
10.1090/ert/686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore natural connections among the representations of the extended affine Lie algebra slN(Cq) with Cq=Cq[t0 +/- 1,t1 +/- 1] an irrational quantum 2-torus, the simple affine vertex algebra Lsl infinity(l,0) with l a positive integer, and Levi subgroups GLI of GLl(C). First, we give a canonical isomorphism between the category of integrable restricted slN(Cq)-modules of level l and that of equivariant quasi Lsl infinity(l,0)-modules. Second, we classify irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules. Third, we establish a duality between irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules and irreducible regular GLI-modules on certain fermionic Fock spaces. Fourth, we obtain an explicit realization of every irreducible N-graded equivariant quasi Lsl infinity(l,0)-module. Fifth, we completely determine the following branchings: (i) The branching from Lsl infinity(l,0)circle times Lsl infinity(l ',0) to Lsl infinity(l+l ',0) for quasi modules. (ii) The branching from slN(Cq) to its Levi subalgebras. (iii) The branching from slN(Cq) to its subalgebras slN(Cq[t0 +/- M0,t1 +/- M1]).
引用
收藏
页码:60 / 107
页数:48
相关论文
共 50 条
[21]   An Application of Collapsing Levels to the Representation Theory of Affine Vertex Algebras [J].
Adamovic, Drazen ;
Kac, Victor G. ;
Frajria, Pierluigi Moseneder ;
Papi, Paolo ;
Perse, Ozren .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (13) :4103-4143
[22]   Modularity of Relatively Rational Vertex Algebras and Fusion Rules of Principal Affine W-Algebras [J].
Arakawa, Tomoyuki ;
van Ekeren, Jethro .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (01) :205-247
[23]   GROUPS OF LIE TYPE, VERTEX ALGEBRAS, AND MODULAR MOONSHINE [J].
Griess, Robert L., Jr. ;
Lam, Ching Hung .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2014, 21 :167-176
[24]   Groups of Lie Type, Vertex Algebras, and Modular Moonshine [J].
Griess, Robert L., Jr. ;
Lam, Ching Hung .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) :10716-10755
[25]   Twisted modules for affine vertex algebras over fields of prime characteristic [J].
Li, Haisheng ;
Mu, Qiang .
JOURNAL OF ALGEBRA, 2020, 541 :380-414
[26]   The Vertex Algebra M(1)+ and Certain Affine Vertex Algebras of Level-1 [J].
Adamovic, Drazen ;
Perse, Ozren .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
[27]   Affine and degenerate affine BMW algebras: actions on tensor space [J].
Daugherty, Zajj ;
Ram, Arun ;
Virk, Rahbar .
SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (02) :611-653
[28]   Relaxed highest-weight modules II: Classifications for affine vertex algebras [J].
Kawasetsu, Kazuya ;
Ridout, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (05)
[29]   Twisted Vertex Operators and Unitary Lie Algebras [J].
Chen, Fulin ;
Gao, Yun ;
Jing, Naihuan ;
Tan, Shaobin .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (03) :573-596
[30]   Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E [J].
Calinescu, C. ;
Lepowsky, J. ;
Milas, A. .
JOURNAL OF ALGEBRA, 2010, 323 (01) :167-192