EXTENDED AFFINE LIE ALGEBRAS, AFFINE VERTEX ALGEBRAS, AND GENERAL LINEAR GROUPS

被引:0
|
作者
Chen, Fulin [1 ]
Li, Haisheng [2 ]
Tan, Shaobin [1 ]
Wang, Qing [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
来源
REPRESENTATION THEORY | 2025年 / 29卷
关键词
LEVEL-RANK DUALITY; INTEGRABLE REPRESENTATIONS; OPERATOR-ALGEBRAS; QUASI-MODULES; CONSTRUCTION; REALIZATION;
D O I
10.1090/ert/686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore natural connections among the representations of the extended affine Lie algebra slN(Cq) with Cq=Cq[t0 +/- 1,t1 +/- 1] an irrational quantum 2-torus, the simple affine vertex algebra Lsl infinity(l,0) with l a positive integer, and Levi subgroups GLI of GLl(C). First, we give a canonical isomorphism between the category of integrable restricted slN(Cq)-modules of level l and that of equivariant quasi Lsl infinity(l,0)-modules. Second, we classify irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules. Third, we establish a duality between irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules and irreducible regular GLI-modules on certain fermionic Fock spaces. Fourth, we obtain an explicit realization of every irreducible N-graded equivariant quasi Lsl infinity(l,0)-module. Fifth, we completely determine the following branchings: (i) The branching from Lsl infinity(l,0)circle times Lsl infinity(l ',0) to Lsl infinity(l+l ',0) for quasi modules. (ii) The branching from slN(Cq) to its Levi subalgebras. (iii) The branching from slN(Cq) to its subalgebras slN(Cq[t0 +/- M0,t1 +/- M1]).
引用
收藏
页码:60 / 107
页数:48
相关论文
共 50 条
  • [1] Toroidal extended affine Lie algebras and vertex algebras
    Chen, Fulin
    Li, Haisheng
    Tan, Shaobin
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025, 27 (01)
  • [2] Extended affine Lie algebras, vertex algebras and equivariant φ-coordinated quasi-modules
    Chen, Fulin
    Tan, Shaobin
    Yu, Nina
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 259 (01) : 347 - 400
  • [3] Trigonometric Lie algebras, affine Lie algebras, and vertex algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    ADVANCES IN MATHEMATICS, 2020, 363
  • [4] Vertex algebras and extended affine Lie algebras coordinated by rational quantum tori
    Chen, Fulin
    Liao, Xiaoling
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF ALGEBRA, 2021, 569 : 111 - 142
  • [5] VERTEX ALGEBRAS ASSOCIATED WITH ELLIPTIC AFFINE LIE ALGEBRAS
    Sun, Jiancai
    Li, Haisheng
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (04) : 579 - 605
  • [6] On integral forms for vertex algebras associated with affine Lie algebras and lattices
    McRae, Robert
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (04) : 1236 - 1257
  • [7] Integral structures in extended affine Lie algebras
    Azam, Saeid
    Parsa, Amir Farahmand
    Farhadi, Mehdi Izadi
    JOURNAL OF ALGEBRA, 2022, 597 : 116 - 161
  • [8] Modular Virasoro vertex algebras and affine vertex algebras
    Jiao, Xiangyu
    Li, Haisheng
    Mu, Qiang
    JOURNAL OF ALGEBRA, 2019, 519 : 273 - 311
  • [9] Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2
    Allison, Bruce
    Berman, Stephen
    Pianzola, Arturo
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (02) : 327 - 385
  • [10] Admissible representations of simple affine vertex algebras
    Futorny, Vyacheslav
    Morales, Oscar
    Krizka, Libor
    JOURNAL OF ALGEBRA, 2023, 628 : 22 - 70