共 50 条
EXTENDED AFFINE LIE ALGEBRAS, AFFINE VERTEX ALGEBRAS, AND GENERAL LINEAR GROUPS
被引:0
|作者:
Chen, Fulin
[1
]
Li, Haisheng
[2
]
Tan, Shaobin
[1
]
Wang, Qing
[1
]
机构:
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
来源:
REPRESENTATION THEORY
|
2025年
/
29卷
关键词:
LEVEL-RANK DUALITY;
INTEGRABLE REPRESENTATIONS;
OPERATOR-ALGEBRAS;
QUASI-MODULES;
CONSTRUCTION;
REALIZATION;
D O I:
10.1090/ert/686
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we explore natural connections among the representations of the extended affine Lie algebra slN(Cq) with Cq=Cq[t0 +/- 1,t1 +/- 1] an irrational quantum 2-torus, the simple affine vertex algebra Lsl infinity(l,0) with l a positive integer, and Levi subgroups GLI of GLl(C). First, we give a canonical isomorphism between the category of integrable restricted slN(Cq)-modules of level l and that of equivariant quasi Lsl infinity(l,0)-modules. Second, we classify irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules. Third, we establish a duality between irreducible N-graded equivariant quasi Lsl infinity(l,0)-modules and irreducible regular GLI-modules on certain fermionic Fock spaces. Fourth, we obtain an explicit realization of every irreducible N-graded equivariant quasi Lsl infinity(l,0)-module. Fifth, we completely determine the following branchings: (i) The branching from Lsl infinity(l,0)circle times Lsl infinity(l ',0) to Lsl infinity(l+l ',0) for quasi modules. (ii) The branching from slN(Cq) to its Levi subalgebras. (iii) The branching from slN(Cq) to its subalgebras slN(Cq[t0 +/- M0,t1 +/- M1]).
引用
收藏
页码:60 / 107
页数:48
相关论文