A defense mechanism against label inference attacks in Vertical Federated Learning

被引:0
|
作者
Arazzi, Marco [1 ]
Nicolazzo, Serena [2 ]
Nocera, Antonino [1 ]
机构
[1] Univ Pavia, Dept Elect Comp & Biomed Engn, Via A Ferrata 5, I-27100 Pavia, PV, Italy
[2] Univ Milan, Dept Comp Sci, Via G Celoria 18, I-20133 Milan, MI, Italy
关键词
Federated learning; Vertical Federated Learning; VFL; Label inference attack; Knowledge distillation; k-anonymity;
D O I
10.1016/j.neucom.2025.129476
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vertical Federated Learning (VFL, for short) is a category of Federated Learning that is gaining increasing attention in the context of Artificial Intelligence. According to this paradigm, machine/deep learning models are trained collaboratively among parties with vertically partitioned data. Typically, in a VFL scenario, the labels of the samples are kept private from all parties except the aggregating server, that is, the label owner. However, recent work discovered that by exploiting the gradient information returned by the server to bottom models, with the knowledge of only a small set of auxiliary labels on a very limited subset of training data points, an adversary could infer the private labels. These attacks are known as label inference attacks in VFL. In our work, we propose a novel framework called KDk (knowledge distillation with k-anonymity) that combines knowledge distillation and k-anonymity to provide a defense mechanism against potential label inference attacks in a VFL scenario. Through an exhaustive experimental campaign, we demonstrate that by applying our approach, the performance of the analyzed label inference attacks decreases consistently, even by more than 60%, maintaining the accuracy of the whole VFL almost unaltered.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] LoDen: Making Every Client in Federated Learning a Defender Against the Poisoning Membership Inference Attacks
    Ma, Mengyao
    Zhang, Yanjun
    Chamikara, M. A. P.
    Zhang, Leo Yu
    Chhetri, Mohan Baruwal
    Bai, Guangdong
    PROCEEDINGS OF THE 2023 ACM ASIA CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, ASIA CCS 2023, 2023, : 122 - 135
  • [42] TEAR: Exploring Temporal Evolution of Adversarial Robustness for Membership Inference Attacks Against Federated Learning
    Liu, Gaoyang
    Tian, Zehao
    Chen, Jian
    Wang, Chen
    Liu, Jiangchuan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 4996 - 5010
  • [43] FedMP: A multi-pronged defense algorithm against Byzantine poisoning attacks in federated learning
    Zhao, Kai
    Wang, Lina
    Yu, Fangchao
    Zeng, Bo
    Pang, Zhi
    COMPUTER NETWORKS, 2025, 257
  • [44] FL-PTD: A Privacy Preserving Defense Strategy Against Poisoning Attacks in Federated Learning
    Xia, Geming
    Chen, Jian
    Huang, Xinyi
    Yu, Chaodong
    Zhang, Zhong
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 735 - 740
  • [45] PROFL: A Privacy-Preserving Federated Learning Method with Stringent Defense Against Poisoning Attacks
    Zhong, Yisheng
    Wang, Li-Ping
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 260 - 265
  • [46] Defense against backdoor attack in federated learning
    Lu, Shiwei
    Li, Ruihu
    Liu, Wenbin
    Chen, Xuan
    COMPUTERS & SECURITY, 2022, 121
  • [47] Comparative Analysis of Membership Inference Attacks in Federated and Centralized Learning
    Abbasi Tadi, Ali
    Dayal, Saroj
    Alhadidi, Dima
    Mohammed, Noman
    INFORMATION, 2023, 14 (11)
  • [48] Toward Few-Label Vertical Federated Learning
    Zhang, Lei
    Fu, Lele
    Liu, Chen
    Yang, Zhao
    Yang, Jinghua
    Zheng, Zibin
    Chen, Chuan
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (07)
  • [49] Secure and Efficient Federated Learning Against Model Poisoning Attacks in Horizontal and Vertical Data Partitioning
    Yu, Chong
    Meng, Zhenyu
    Zhang, Wenmiao
    Lei, Lei
    Ni, Jianbing
    Zhang, Kuan
    Zhao, Hai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [50] Label Privacy Source Coding in Vertical Federated Learning
    Gao, Dashan
    Wan, Sheng
    Gu, Hanlin
    Fan, Lixin
    Yao, Xin
    Yang, Qiang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT I, ECML PKDD 2024, 2024, 14941 : 313 - 331