A defense mechanism against label inference attacks in Vertical Federated Learning

被引:0
|
作者
Arazzi, Marco [1 ]
Nicolazzo, Serena [2 ]
Nocera, Antonino [1 ]
机构
[1] Univ Pavia, Dept Elect Comp & Biomed Engn, Via A Ferrata 5, I-27100 Pavia, PV, Italy
[2] Univ Milan, Dept Comp Sci, Via G Celoria 18, I-20133 Milan, MI, Italy
关键词
Federated learning; Vertical Federated Learning; VFL; Label inference attack; Knowledge distillation; k-anonymity;
D O I
10.1016/j.neucom.2025.129476
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vertical Federated Learning (VFL, for short) is a category of Federated Learning that is gaining increasing attention in the context of Artificial Intelligence. According to this paradigm, machine/deep learning models are trained collaboratively among parties with vertically partitioned data. Typically, in a VFL scenario, the labels of the samples are kept private from all parties except the aggregating server, that is, the label owner. However, recent work discovered that by exploiting the gradient information returned by the server to bottom models, with the knowledge of only a small set of auxiliary labels on a very limited subset of training data points, an adversary could infer the private labels. These attacks are known as label inference attacks in VFL. In our work, we propose a novel framework called KDk (knowledge distillation with k-anonymity) that combines knowledge distillation and k-anonymity to provide a defense mechanism against potential label inference attacks in a VFL scenario. Through an exhaustive experimental campaign, we demonstrate that by applying our approach, the performance of the analyzed label inference attacks decreases consistently, even by more than 60%, maintaining the accuracy of the whole VFL almost unaltered.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] FD-Leaks: Membership Inference Attacks Against Federated Distillation Learning
    Yang, Zilu
    Zhao, Yanchao
    Zhang, Jiale
    WEB AND BIG DATA, PT III, APWEB-WAIM 2022, 2023, 13423 : 364 - 378
  • [22] Defending against Membership Inference Attacks in Federated learning via Adversarial Example
    Xie, Yuanyuan
    Chen, Bing
    Zhang, Jiale
    Wu, Di
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 153 - 160
  • [23] Efficient Privacy-Preserving Federated Learning Against Inference Attacks for IoT
    Miao, Yifeng
    Chen, Siguang
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [24] Moat: Model Agnostic Defense against Targeted Poisoning Attacks in Federated Learning
    Manna, Arpan
    Kasyap, Harsh
    Tripathy, Somanath
    INFORMATION AND COMMUNICATIONS SECURITY (ICICS 2021), PT I, 2021, 12918 : 38 - 55
  • [25] Evaluation of Various Defense Techniques Against Targeted Poisoning Attacks in Federated Learning
    Richards, Charles
    Khemani, Sofia
    Li, Feng
    2022 IEEE 19TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2022), 2022, : 693 - 698
  • [26] Edge-Cloud Collaborative Defense against Backdoor Attacks in Federated Learning
    Yang, Jie
    Zheng, Jun
    Wang, Haochen
    Li, Jiaxing
    Sun, Haipeng
    Han, Weifeng
    Jiang, Nan
    Tan, Yu-An
    SENSORS, 2023, 23 (03)
  • [27] Decentralized Defense: Leveraging Blockchain against Poisoning Attacks in Federated Learning Systems
    Thennakoon, Rashmi
    Wanigasundara, Arosha
    Weerasinghe, Sanjaya
    Seneviratne, Chatura
    Siriwardhana, Yushan
    Liyanage, Madhusanka
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 950 - 955
  • [28] Inference attacks based on GAN in federated learning
    Trung Ha
    Tran Khanh Dang
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2022, 18 (2/3) : 117 - 136
  • [29] Label noise analysis meets adversarial training: A defense against label poisoning in federated learning
    Hallaji, Ehsan
    Razavi-Far, Roozbeh
    Saif, Mehrdad
    Herrera-Viedma, Enrique
    KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [30] LDIA: Label distribution inference attack against federated learning in edge computing
    Gu, Yuhao
    Bai, Yuebin
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 74