Impact of calcination temperature on the structural, surface area, and magnetic properties of NiFe2O4/MnFe2O4/CeO2 ternary nanocomposites

被引:0
|
作者
Ravi, Gulime [1 ]
Thyagarajan, K. [2 ]
机构
[1] Jawaharlal Nehru Technol Univ Anantapur, Dept Phys, Anantapuramu 515002, India
[2] JNTUA Coll Engn, Dept Phys, Kalikiri 517234, India
关键词
Nanocomposites; FE-SEM; XPS; VSM; SPINEL FERRITES;
D O I
10.1016/j.inoche.2025.114028
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
This study focuses on the synthesis and comprehensive characterization of ternary NiFe2O4/MnFe2O4/CeO2 nanocomposites. A suite of analytical techniques, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area analysis, and magnetic property measurements, were employed to investigate the structural, morphological, compositional, surface, and magnetic properties of these materials. A systematic approach was implemented for the synthesis of the nanocomposites. FE-SEM analysis revealed the morphology and size distribution of the nanoparticles, while XRD confirmed the formation of the cubic phase within the nanocomposites. An increase in calcination temperature (from 600 to 800 degrees C) resulted in an increase in average particle size (11, 12 and 22 nm). FTIR and XPS techniques were utilized to study the chemical bonding and surface composition, respectively. BET analysis demonstrated a substantial surface area, however, the surface area decreased with increasing calcination temperature (37.17, 13.7, and 4.16 m2/g). Magnetic property measurements revealed an enhancement in magnetic behavior (2.88, 6.65, and 10. 54 emu/g) with increasing calcination temperature, indicating potential applications in biomedical and magnetic storage fields. All in all, this work highlights the potential of NiFe2O4/MnFe2O4/CeO2 ternary nanocomposites for a variety of technological applications by illuminating their complex characterization.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] CoFe2O4/NiFe2O4/CeO2 nanocomposites: structural, FTIR, XPS, BET, and magnetic properties
    Ravi, Gulime
    Thyagarajan, K.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (10):
  • [2] Structural, morphological, magnetic, electrochemical and biocompatible properties of ZnFe2O4/MgFe2O4/NiFe2O4/CeO2 nanocomposites
    Manohar, Ala
    Suvarna, Thirukachhi
    Vattikuti, S. V. Prabhakar
    Manivasagan, Panchanathan
    Jang, Eue-Soon
    Sudhani, Hemanth P. K.
    Al-Enizi, Abdullah M.
    Kumar, Ashok
    Sharma, Kuldeep
    Mameda, Naresh
    Kim, Ki Hyeon
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 705
  • [3] Effect of annealing on structural and magnetic properties of NiFe2O4/ZnFe2O4 nanocomposites
    Anumol, C. N.
    Chithra, M.
    Shalini, M. Govindaraj
    Sahoo, Subasa C.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 469 : 81 - 88
  • [4] Influence of temperature on structural, magnetic and thermal properties of superparamagnetic MnFe2O4 nanoparticles
    Nitika
    Rana, Anu
    Kumar, Vinod
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 4773 - 4776
  • [5] Microstructural and magnetic properties of rGO/MnFe2O4 nanocomposites; relaxation dynamics
    Mishra, Amodini
    Sharma, Vipul
    Mohanty, Tanuja
    Kuanr, Bijoy K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 790 : 983 - 991
  • [6] Tailoring the Structural, Optical and Magnetic Properties of NiFe2O4 by Varying Annealing Temperature
    Narender Sapna
    Vinod Budhiraja
    S. K. Kumar
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 2647 - 2654
  • [7] Tailoring the Structural, Optical and Magnetic Properties of NiFe2O4 by Varying Annealing Temperature
    Sapna
    Budhiraja, Narender
    Kumar, Vinod
    Singh, S. K.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (08) : 2647 - 2654
  • [8] A Facile Solution Combustion and Calcination Process for the Preparation of Magnetic NiFe2O4/SiO2 Nanocomposites
    Liu, Min
    Lv, Zhixiang
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (06) : 4211 - 4216
  • [9] Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles
    Almeida, Trevor P.
    Moro, Fabrizio
    Fay, Michael W.
    Zhu, Yanqiu
    Brown, Paul D.
    JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (05)
  • [10] Control growth of NiFe2O4 phase in thermal annealed α-Fe2O3/NiFe2O4 nanocomposites for the beneficial magnetic application
    Jena, S.
    Mishra, D. K.
    Soam, Ankur
    Jakhar, Narendra
    Mallick, P.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (07):