Behaviour of Steel Fibre Reinforced Geopolymer Concrete Deep Beams Under the Effect of Elevated Temperatures

被引:0
|
作者
Albidah, Abdulrahman S. [1 ]
机构
[1] King Saud Univ, Dept Civil Engn, Coll Engn, Riyadh, Saudi Arabia
关键词
Geopolymer; Metakaolin; Fly Ash; Elevated Temperature; Deep Beam; ASH-BASED GEOPOLYMER; SHEAR BEHAVIOR; COMPRESSIVE STRENGTH; PERFORMANCE;
D O I
10.1007/978-981-97-5311-6_31
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Alkali-activated or geopolymer concrete has become popular as a promising substitute for ordinary Portland cement (OPC) concrete. Geopolymer concrete has a lower environmental impact than OPC, which has made it a favourable research option. Geopolymer binders can be manufactured from by-product/waste materials (e.g., slag, fly ash, red mud, etc.) or natural materials (e.g., kaolin or pozzolans). Previous geopolymer research has been extensively focused on the material level, with limited studies of the behaviour of the structural components. Therefore, the shear behaviour of steel fibre reinforced concrete deep beams synthesized from metakaolin and fly ash was investigated in the present study. Three deep beams were exposed to an elevated temperature of 600 degrees C and tested under four-point bending configuration. The primary variable was the steel fibre content (0, 0.35 and 0.7%). It was observed that the addition of steel fibres contributed to the compressive strength after heat exposure, with attained compressive strengths of 16.3, 20.7 and 19.1 MPa, respectively, for concrete with 0, 0.35 and 0.7% steel fibres. The shear strength after exposure 600 degrees C was 141.2, 143.8 and 152 kN, respectively, for concrete with 0, 0.35 and 0.7% steel fibres, indicating a negligible effect of steel fibres in increasing the shear strength of metakaolin-fly ash based geopolymer concrete after heat exposure.
引用
收藏
页码:322 / 332
页数:11
相关论文
共 50 条
  • [1] The behaviour of steel-fibre-reinforced geopolymer concrete beams in shear
    Tian Sing Ng
    Amin, Ali
    Foster, Stephen J.
    MAGAZINE OF CONCRETE RESEARCH, 2013, 65 (05) : 308 - 318
  • [2] Behaviour of fibre reinforced concrete deep beams
    Sachan, A.K.
    Rao, C.V.S.Kameswara
    Cement and Concrete Composites, 1990, 12 (03) : 211 - 218
  • [3] Flexural behaviour of fibre reinforced geopolymer concrete composite beams
    Vijai, K.
    Kumutha, R.
    Vishnuram, B. G.
    COMPUTERS AND CONCRETE, 2015, 15 (03): : 437 - 459
  • [4] FLEXURAL BEHAVIOUR OF STEEL FIBRE REINFORCED CONCRETE AT ELEVATED TEMPERATURES USING ABAQUS
    Jessie, Anita J.
    Santhi, A. S.
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2019, 49 (03): : 409 - 415
  • [5] Flexural behaviour of geopolymer concrete beams exposed to elevated temperatures
    Mathew, George
    Joseph, Benny
    JOURNAL OF BUILDING ENGINEERING, 2018, 15 : 311 - 317
  • [6] Shear behaviour of steel fibre reinforced concrete beams
    A. Meda
    F. Minelli
    G. A. Plizzari
    P. Riva
    Materials and Structures, 2005, 38 (3) : 343 - 351
  • [7] Shear behaviour of steel fibre reinforced concrete beams
    Meda, A
    Minelli, F
    Plizzari, GA
    Riva, P
    MATERIALS AND STRUCTURES, 2005, 38 (277) : 343 - 351
  • [8] Fatigue behaviour of steel fibre reinforced concrete beams
    Balasubramanian, K.
    Bharatkumar, B.H.
    Gopalakrishnan, S.
    Lakshmanan, N.
    Parameswaran, V.S.
    Journal of the Institution of Engineers (India): Civil Engineering Division, 2000, 81 (02): : 71 - 78
  • [9] Effect of corrosion on the behaviour of reinforced geopolymer concrete beams
    Sundar Kumar, S.
    Pavithra, H.
    Srinivasan, V.
    Suresh Babu, S.
    Journal of Structural Engineering (India), 2022, 49 (03): : 249 - 258
  • [10] Mechanical properties of steel fibre reinforced geopolymer concretes at elevated temperatures
    Shaikh, Faiz Uddin Ahmed
    Hosan, Anwar
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 114 : 15 - 28