Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol

被引:0
作者
Li Junying [1 ]
Chen Xinyan [1 ]
Diao Xihui [1 ]
Muhammad, Yaseen [2 ]
Chen Chao [1 ]
Wang Hao [1 ]
Qi Chuansong [1 ]
Li Wei [1 ]
机构
[1] Beijing Inst Petrochem Technol, Coll New Mat & Chem Engn, Beijing Key Lab Special Elastomer Composite Mat, Beijing 102617, Peoples R China
[2] Univ Peshawar, Inst Chem Sci, Peshawar 25120, Pakistan
关键词
camphoric acid; coordination polymer; enantioselectivity; propylene glycol; POLYMERS;
D O I
10.11862/CJIC.20240084
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Herein, a layered chiral coordination polymer, [Cd-2(D-cam)(2)(2,2' -bipy)(2)](n) (Cd-CP), was synthesized using a solvothermal method with camphoric acid (D-H(2)cam), 2,2'-bipyridine (2,2'-bipy) and Cd2+, and Tb3+@Cd-CP was in-situ synthesized introducing Tb3+ ions. The fluorescence experiments revealed that compared to Cd-CP, Tb3+@ Cd-CP exhibited ultra-high fluorescence performance. The luminescence sensing performance demonstrated that Tb3+@Cd-CP could distinguish R/S-propylene glycol (R/S-PG) by fluorescence responses, with fluorescence quenching constant of 5.3x10(3) and 2.0x10(3) L center dot mol(-1) respectively and the enantioselectivity factor (a) of 2.65. Moreover, Tb3+@Cd-CP demonstrated limits of detection of 9.3 and 19.0 mu mol center dot L-1 for R-PG and S-PG, respectively, and showed good reproducibility.
引用
收藏
页码:2497 / 2504
页数:8
相关论文
共 36 条
  • [1] Chen X M, Hu N, Wei H F, Wang H B., Chiral fluorescent recognition by naphthalimide dyes⊂cucurbit[7]uril assembly, J. Fluoresc, 30, pp. 679-685, (2020)
  • [2] Chen A L, Zhong Y J, Yin X H, Li R J, Deng Q F, Yang R., A novel achiral fluorescent nanoprobe for the chiral recognition of cysteine enantiomers, Sens. Actuator B⁃Chem, 393, (2023)
  • [3] Niu X H, Yan S M, Chen J L, Li H X, Wang K J., Enantioselective recognition of L/D⁃amino acids in the chiral nanochannels of a metal⁃ organic framework, Electrochim. Acta, 405, (2022)
  • [4] Pemberton M A., Kimber I., Propylene glycol, skin sensitisation and allergic contact dermatitis: A scientific and regulatory conundrum, Regul. Toxicol. Pharmacol, 138, (2023)
  • [5] Shrirame B S, Varma A R, Sahoo S S, Gayen K, Maity S K., Techno⁃ commercial viability of glycerol valorization to 1,2⁃ and 1,3⁃propanedi⁃ ol using pinch technology, Biomass Bioenerg, 177, (2023)
  • [6] Tao Y M, Bu C Y, Zou L H, Hu Y L, Zheng Z J, Ouyang J., A compre⁃ hensive review on microbial production of 1, 2 ⁃ propanediol: Micro ⁃ organisms, metabolic pathways, and metabolic engineering, Biotechnol. Biofuels, 14, (2021)
  • [7] Glowka M, Krawczyk T., New trends and perspectives in production of 1,2⁃propanediol, ACS Sustain. Chem. Eng, 11, pp. 7274-7287, (2023)
  • [8] Zhang H Q, Liu W K, Qin A L, Wang F F, Zhao L C, Zhang S, Li Y, Yang H., Helical twisting behaviour of new chiral dopants with (S)⁃1,2⁃ propanediol units for nematic liquid crystals, Liq. Cryst, 37, pp. 317-324, (2010)
  • [9] WANG G F, SUN S W, SONG S F, LU M., Synthesis of a Cd(II)⁃based coordination polymer for luminescence detecting 2,4,6⁃trinitrophenol, Chinese J. Inorg. Chem, 39, 12, pp. 2407-2414, (2024)
  • [10] Wang M M, Xiong T Z, Chen B C, Hu J J, Wen H R, Liu S J., Solvent⁃ and pH⁃stable Eu(III)⁃based metal⁃organic framework with phosphate⁃ ratio fluorescence sensing and significant proton conduction, Inorg. Chem, 62, pp. 21322-21328, (2023)