Neoarchean orogenic belt evolution in the northeast North China Craton: Implications for the reconstruction of early Earth's microplates

被引:0
|
作者
Sun, Guozheng [1 ,2 ,3 ]
Liu, Shuwen [1 ,2 ,4 ]
Li, Sanzhong [1 ,2 ,3 ]
Kusky, Timothy M. [5 ]
Hu, Fangyang [6 ]
Bao, Han [4 ]
Gao, Lei [7 ]
Hu, Yalu [8 ]
Yu, Shengyao [1 ,2 ,3 ]
Dai, Liming [1 ,2 ,3 ]
Wang, Lintao [1 ,2 ,3 ]
Wang, Xi [1 ,2 ,3 ]
机构
[1] Ocean Univ China, MOE, Frontiers Sci Ctr Deep Ocean Multispheres & Earth, Key Lab Submarine Geosci & Prospecting Tech, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Coll Marine Geosci, Qingdao 266100, Peoples R China
[3] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Mineral Resources, Qingdao 266237, Peoples R China
[4] Peking Univ, Key Lab Orogen Belts & Crustal Evolut, Minist Educ, Beijing 100871, Peoples R China
[5] China Univ Geosci, Ctr Global Tecton, Sch Earth Sci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[6] Chinese Acad Sci, Key Lab Mineral Resources, Inst Geol & Geophys, Beijing 100029, Peoples R China
[7] China Univ Geosci Beijing, Sch Earth Sci & Resources, Beijing 100083, Peoples R China
[8] China Geol Survey, Dev Res Ctr, Beijing 100037, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Archean microplates; Spatial-temporal evolution of tectono-; magmatism; Ancient orogenic belt; Subduction-collision orogenic cycles; Northeastern North China Craton; ANSHAN-BENXI AREA; GRANITE-GREENSTONE BELT; U-PB GEOCHRONOLOGY; CRUSTAL GROWTH; LIAONING PROVINCE; CONTINENTAL-CRUST; TRONDHJEMITIC GNEISSES; METAVOLCANIC ROCKS; PETRO-GEOCHEMISTRY; PLATE-TECTONICS;
D O I
10.1016/j.precamres.2024.107659
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Identification and detailed studies of ancient orogens are one of the most important scientific problems for understanding the formation and evolution of early continental crust. However, it is tough to identify the original architecture of ancient orogenic belts due to the strong disturbances of late tectonothermal events, which makes it hard to reconstruct the formation mechanism and evolution process of early microplates. Here we used the spatial-temporal evolution of Neoarchean tectono-magmatism to trace orogenic processes of the Neoarchean continental crust of the North China Craton. Regional investigations in lithological assemblages, structural geology, chronology, geochemistry, and isotopic characteristics suggest that the Archean crystalline basement of the Eastern Liaoning Range in the northeastern North China Craton may be divided into three tectonic zones, each with its independent tectono-thermal evolution. We suggest therefore that these are independent terranes, namely microplates. Anshan-Benxi microplate in the southwest is a similar to 3.8 to similar to 2.9 Ga ancient continental nucleus with abundant Neoarchean (2.54-2.49 Ga) crust-derived K2O-rich granitoids. Waitoushan-Weiziyu-Jiubing microplate in the center is mainly composed of similar to 2.7 Ga tonalite-trondhjemite-granodiorite suite and 2.6-2.5 Ga diversified granitoids with some remnants of ancient oceanic lithosphere. Liaobei microplate in the northeast contains mainly late Neoarchean (2.57-2.52 Ga) magmatic rocks with minor Mesoarchean (similar to 3.1 Ga) crustal materials. We summarize the formation mechanism, essential features, and identification marks of the Archean orogenic belt, and conclude that the Eastern Liaoning Range experienced the following four stages of Neoarchean geodynamic evolution. (1) In the early Neoarchean (2.71-2.68 Ga), intra-oceanic subduction generated the similar to 2.7 Ga island arc belt (proto-Waitoushan-Weiziyu-Jiubing microplate); (2) The 2.60-2.56 Ga warm subduction of oceanic slabs reformed proto-Liaobei microplate, and re-deformed the residual similar to 2.7 Ga island arc belt; (3) During 2.56-2.54 Ga, the Waitoushan-Weiziyu-Jiubing microplate and Liaobei microplate were amalgamated by an 'arc-arc' collision; (4) At the end of Archean (2.54-2.50 Ga), the Waitoushan-Weiziyu-Jiubing microplate + Liaobei microplate and proto-Anshan-Benxi microplate were finally aggregated through the 'arc-proto-continental' collision, forming a unified crystalline basement of the Eastern Liaoning Range. Our work suggests that the short-term, small-scale subduction-collision orogenic cycles within pristine plate tectonic regimes played a crucial role in the Neoarchean crustal growth and evolution of the North China Craton.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Petrogenesis of the Neoarchean diorite-granite association in the Wangwushan area, southern North China Craton: Implications for continental crust evolution
    Zhou, Yanyan
    Zhao, Taiping
    Sun, Qianying
    Zhai, Mingguo
    Lan, Zhongwu
    Hofmann, Axel
    PRECAMBRIAN RESEARCH, 2019, 326 : 84 - 104
  • [32] From subduction initiation to hot subduction: Life of a Neoarchean subduction zone from the Dengfeng Greenstone Belt, North China Craton
    Deng, Hao
    Jia, Ning
    Kusky, Timothy
    Polat, Ali
    Peng, Guanglei
    Huang, Bo
    Wang, Lu
    Wang, Junpeng
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2022, 134 (5-6) : 1277 - 1300
  • [33] Two orogenic cycles recorded by eclogites in the Yuka-Luofengpo terrane: Implications for the Mesoproterozoic to early Paleozoic tectonic evolution of the North Qaidam orogenic belt, NW China
    Ren, Yunfei
    Chen, Danling
    Zhu, Xiaohui
    Ren, Zhanli
    Gong, Xiangkuan
    Luo, Fenhong
    PRECAMBRIAN RESEARCH, 2019, 333
  • [34] Late-Neoarchean magmatism and metamorphism at the southeastern margin of the North China Craton and their tectonic implications
    Wang, An-Dong
    Liu, Yi-Can
    Gu, Xiao-Feng
    Hou, Zhen-Hui
    Song, Biao
    PRECAMBRIAN RESEARCH, 2012, 220 : 65 - 79
  • [35] Neoarchean metagabbro and charnockite in the Yinshan block, western North China Craton: Petrogenesis and tectonic implications
    Zhang, Xiaohui
    Yuan, Lingling
    Xue, Fuhong
    Zhai, Mingguo
    PRECAMBRIAN RESEARCH, 2014, 255 : 563 - 582
  • [36] Ediacaran to Paleozoic magmatism in West Junggar Orogenic Belt, NW China, and implications for evolution of Central Asian Orogenic Belt
    Zheng, Bo
    Han, Bao-Fu
    Liu, Bo
    Wang, Zeng-zhen
    LITHOS, 2019, 338 : 111 - 127
  • [37] Kinematics and geochronology of the ductile shear zones in the western Shandong granite-greenstone belt: Implications for the Neoarchean plate tectonics of the North China Craton
    Wang, Dongming
    Hu, Jianmin
    Zhao, Yuanfang
    Yan, Jiyuan
    Gong, Wangbin
    Yu, Ping
    Zhang, Zhigang
    Qiu, Zhanlin
    PRECAMBRIAN RESEARCH, 2024, 411
  • [38] Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton.
    Geng YuanSheng
    Shen QiHan
    Ren LiuDong
    ACTA PETROLOGICA SINICA, 2010, 26 (07) : 1945 - 1966
  • [39] Petrogenesis of 2.7-2.65 Ga TTGs in the Wutai Complex: Constraints on the Neoarchean crustal evolution of the North China Craton
    Mao, Mengxia
    Liou, Peng
    Du, Lilin
    Guo, Jinghui
    PRECAMBRIAN RESEARCH, 2024, 400
  • [40] Geochronology and geochemistry of early Mesozoic magmatism in the northeastern North China Craton: Implications for tectonic evolution
    Zhang, Xiao-Ming
    Xu, Wen-Liang
    Sun, Chen-Yang
    Wang, Feng
    Yang, De-Bin
    GONDWANA RESEARCH, 2019, 67 : 33 - 45