A Schwarz lemma of harmonic maps into metric spaces

被引:0
作者
Wang, Jie [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2024年 / 32卷 / 11期
基金
中国国家自然科学基金;
关键词
harmonic maps; singular spaces; Schwarz lemma; maximum principle; Alexandrov curveture bound;
D O I
10.3934/era.2024276
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We established a Schwarz lemma for harmonic maps from Riemannian manifolds to metric spaces of curvature bounded above in the sense of Alexandrov. We adopted the gradient estimate technique which was based on Zhang-Zhu's maximum principle. In particular, when the domain manifold was a hyperbolic surface, the energy of any conformal harmonic maps into CAT(-1) spaces were bounded from above uniformly.
引用
收藏
页码:5966 / 5974
页数:9
相关论文
共 20 条
[1]   An extension of Schwarz's lemma [J].
Ahlfors, Lars V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :359-364
[2]  
[Anonymous], 1968, ENTIRE FUNCTIONS REL
[3]  
Bridson M., 1999, METRIC SPACES NONPOS
[4]   A Schwarz lemma and a Liouville theorem for generalized harmonic maps [J].
Chen, Qun ;
Li, Kaipeng ;
Qiu, Hongbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
[5]   A SCHWARZ LEMMA FOR V-HARMONIC MAPS AND THEIR APPLICATIONS [J].
Chen, Qun ;
Zhao, Guangwen .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (03) :504-512
[6]   Schwarz-type lemmas for generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds [J].
Chong, Tian ;
Dong, Yuxin ;
Ren, Yibin ;
Yu, Weike .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (01) :26-41
[7]   Schwarz Type Lemmas for Pseudo-Hermitian Manifolds [J].
Dong, Yuxin ;
Ren, Yibin ;
Yu, Weike .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (03) :3161-3195
[8]   A Bochner formula for harmonic maps into non-positively curved metric spaces [J].
Freidin, Brian .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
[9]  
Goldberg SamuelI., 1977, Bull. Soc. Math. Grece (N.S.), V18, P141
[10]  
GROMOV M, 1992, PUBL MATH-PARIS, P165