A Lightweight Model for Shine Muscat Grape Detection in Complex Environments Based on the YOLOv8 Architecture

被引:0
|
作者
Tian, Changlei [1 ]
Liu, Zhanchong [1 ]
Chen, Haosen [1 ]
Dong, Fanglong [1 ]
Liu, Xiaoxiang [1 ]
Lin, Cong [1 ]
机构
[1] Jinan Univ, Sch Intelligent Syst Sci & Engn, JNU Ind Sch Artificial Intelligence, Zhuhai 519000, Peoples R China
来源
AGRONOMY-BASEL | 2025年 / 15卷 / 01期
关键词
grape cluster detection and classification; lightweight; YOLOv8;
D O I
10.3390/agronomy15010174
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Automated harvesting of "Sunshine Rose" grapes requires accurate detection and classification of grape clusters under challenging orchard conditions, such as occlusion and variable lighting, while ensuring that the model can be deployed on resource- and computation-constrained edge devices. This study addresses these challenges by proposing a lightweight YOLOv8-based model, incorporating DualConv and the novel C2f-GND module to enhance feature extraction and reduce computational complexity. Evaluated on the newly developed Shine-Muscat-Complex dataset of 4715 images, the proposed model achieved a 2.6% improvement in mean Average Precision (mAP) over YOLOv8n while reducing parameters by 36.8%, FLOPs by 34.1%, and inference time by 15%. Compared with the latest YOLOv11n, our model achieved a 3.3% improvement in mAP, with reductions of 26.4% in parameters, 14.3% in FLOPs, and 14.6% in inference time, demonstrating comprehensive enhancements. These results highlight the potential of our model for accurate and efficient deployment on resource-constrained edge devices, providing an algorithmic foundation for the automated harvesting of "Sunshine Rose" grapes.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] An Improved Forest Smoke Detection Model Based on YOLOv8
    Wang, Yue
    Piao, Yan
    Wang, Haowen
    Zhang, Hao
    Li, Bing
    FORESTS, 2024, 15 (03):
  • [42] ESCL-YOLO: a target detection algorithm for complex underwater environments based on improved YOLOv8
    Wu, Huixin
    Wang, Liuyi
    Zhu, Yang
    Cao, Mengdi
    Zhou, Hongyang
    JOURNAL OF ELECTRONIC IMAGING, 2025, 34 (01)
  • [43] A Lightweight Forest Pest Image Recognition Model Based on Improved YOLOv8
    Jiang, Tingyao
    Chen, Shuo
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [44] Enhancing Livestock Detection: An Efficient Model Based on YOLOv8
    Fang, Chengwu
    Li, Chunmei
    Yang, Peng
    Kong, Shasha
    Han, Yaosheng
    Huang, Xiangjie
    Niu, Jiajun
    APPLIED SCIENCES-BASEL, 2024, 14 (11):
  • [45] YOLO-SGF: Lightweight network for object detection in complex infrared images based on improved YOLOv8
    Guo, Cong
    Ren, Kan
    Chen, Qian
    INFRARED PHYSICS & TECHNOLOGY, 2024, 142
  • [46] An Improved Microaneurysm Detection Model Based on SwinIR and YOLOv8
    Zhang, Bowei
    Li, Jing
    Bai, Yun
    Jiang, Qing
    Yan, Biao
    Wang, Zhenhua
    BIOENGINEERING-BASEL, 2023, 10 (12):
  • [47] A Fire and Smoke Detection Model Based on YOLOv8 Improvement
    Gao, Pengcheng
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 179 - 190
  • [48] Leather Defect Detection Based on Improved YOLOv8 Model
    Peng, Zirui
    Zhang, Chen
    Wei, Wei
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [49] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    SENSORS, 2023, 23 (20)
  • [50] Traffic flow parameter estimation for complex environments based on improved YOLOv8
    Ai, Wenhuan
    Zeng, Jingming
    Lei, Zhengqing
    Li, Danyang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024,