A Lightweight Model for Shine Muscat Grape Detection in Complex Environments Based on the YOLOv8 Architecture

被引:0
作者
Tian, Changlei [1 ]
Liu, Zhanchong [1 ]
Chen, Haosen [1 ]
Dong, Fanglong [1 ]
Liu, Xiaoxiang [1 ]
Lin, Cong [1 ]
机构
[1] Jinan Univ, Sch Intelligent Syst Sci & Engn, JNU Ind Sch Artificial Intelligence, Zhuhai 519000, Peoples R China
来源
AGRONOMY-BASEL | 2025年 / 15卷 / 01期
关键词
grape cluster detection and classification; lightweight; YOLOv8;
D O I
10.3390/agronomy15010174
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Automated harvesting of "Sunshine Rose" grapes requires accurate detection and classification of grape clusters under challenging orchard conditions, such as occlusion and variable lighting, while ensuring that the model can be deployed on resource- and computation-constrained edge devices. This study addresses these challenges by proposing a lightweight YOLOv8-based model, incorporating DualConv and the novel C2f-GND module to enhance feature extraction and reduce computational complexity. Evaluated on the newly developed Shine-Muscat-Complex dataset of 4715 images, the proposed model achieved a 2.6% improvement in mean Average Precision (mAP) over YOLOv8n while reducing parameters by 36.8%, FLOPs by 34.1%, and inference time by 15%. Compared with the latest YOLOv11n, our model achieved a 3.3% improvement in mAP, with reductions of 26.4% in parameters, 14.3% in FLOPs, and 14.6% in inference time, demonstrating comprehensive enhancements. These results highlight the potential of our model for accurate and efficient deployment on resource-constrained edge devices, providing an algorithmic foundation for the automated harvesting of "Sunshine Rose" grapes.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Improved Real-Time Monitoring Lightweight Model for UAVs Based on YOLOv8
    Zhang, Chuanlei
    Zhao, Xingchen
    Sun, Di
    Wang, Xinliang
    Xu, Guoyi
    Zhao, Runjun
    Gao, Ming
    Ma, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XI, ICIC 2024, 2024, 14872 : 278 - 288
  • [22] A Lightweight Network Based on YOLOv8 for Improving Detection Performance and the Speed of Thermal Image Processing
    Dinh, Huyen Trang
    Kim, Eung-Tae
    ELECTRONICS, 2025, 14 (04):
  • [23] FBS-YOLO: an improved lightweight bearing defect detection algorithm based on YOLOv8
    Li, Junjie
    Cheng, Mingxia
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [24] A lightweight algorithm for steel surface defect detection using improved YOLOv8
    Ma, Shuangbao
    Zhao, Xin
    Wan, Li
    Zhang, Yapeng
    Gao, Hongliang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [25] Detection of Coal and Gangue Based on Improved YOLOv8
    Zeng, Qingliang
    Zhou, Guangyu
    Wan, Lirong
    Wang, Liang
    Xuan, Guantao
    Shao, Yuanyuan
    SENSORS, 2024, 24 (04)
  • [26] Wheat Seed Detection and Counting Method Based on Improved YOLOv8 Model
    Ma, Na
    Su, Yaxin
    Yang, Lexin
    Li, Zhongtao
    Yan, Hongwen
    SENSORS, 2024, 24 (05)
  • [27] A Lightweight and Dynamic Feature Aggregation Method for Cotton Field Weed Detection Based on Enhanced YOLOv8
    Ren, Doudou
    Yang, Wenzhong
    Lu, Zhifeng
    Chen, Danny
    Su, Wenxuan
    Li, Yihang
    ELECTRONICS, 2024, 13 (11)
  • [28] Traffic sign detection method based on improved YOLOv8
    Gaihua Wang
    Peng Jin
    Zhiwei Qi
    Xiaohuan Li
    Scientific Reports, 15 (1)
  • [29] A Universal Tire Detection Method Based on Improved YOLOv8
    Guo, Chi
    Chen, Mingxia
    Wu, Junjie
    Hu, Haipeng
    Huang, Luobing
    Li, Junjie
    IEEE ACCESS, 2024, 12 : 174770 - 174781
  • [30] Citrus Diseases and Pests Detection Model Based on Self-Attention YOLOV8
    Luo, Dehuan
    Xue, Yueju
    Deng, Xinru
    Yang, Bin
    Chen, Haifei
    Mo, Zhujiang
    IEEE ACCESS, 2023, 11 : 139872 - 139881