Temporal Focal Modulation Networks for EEG-Based Cross-Subject Motor Imagery Classification

被引:0
|
作者
Hameed, Adel [1 ,2 ]
Fourati, Rahma [1 ,3 ]
Ammar, Boudour [1 ]
Sanchez-Medina, Javier [4 ]
Ltifi, Hela [1 ,5 ]
机构
[1] Natl Engn Sch Sfax, Res Grp Intelligent Machines, Sfax 3038, Tunisia
[2] Univ Sfax, Natl Sch Elect & Telecommun Sfax, Sfax, Tunisia
[3] Univ Jendouba, Fac Sci Jurid Econ & Gest Jendouba, Jendouba 8189, Tunisia
[4] Univ Las Palmas Gran Canaria, Innovat Ctr Informat Soc, Las Palmas Gran Canaria, Spain
[5] Univ Kairouan, Fac Sci & Tech Sidi Bouzid, Dept Comp Sci, Kairouan, Tunisia
关键词
Electroencephalography; Motor imagery; Transformer; Focal Modulation Networks; TRANSFORMER;
D O I
10.1007/978-3-031-70259-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motor Imagery (MI) EEG decoding is crucial in Brain-Computer Interface (BCI) technology, facilitating direct communication between the brain and external devices. However, accurately capturing temporal dependencies in MI EEG signals, especially in subject-independent MI-BCIs, remains a persistent challenge. In this paper, we present Temporal-FocalNets, a novel framework designed to address this challenge by leveraging focal modulation techniques. Temporal-FocalNets efficiently prioritize temporal dynamics, thereby enhancing the accuracy and robustness of MI EEG decoding models. Through comprehensive experiments on benchmark datasets (2a and 2b), Temporal-FocalNets demonstrates superior performance compared to established baseline models. This innovation marks a significant advancement in subject-independent MI-BCIs, offering new possibilities for individuals with motor disabilities to interact with their environment using brain signals.
引用
收藏
页码:445 / 457
页数:13
相关论文
共 50 条
  • [31] Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness
    Li, Ruilin
    Wang, Lipo
    Sourina, Olga
    METHODS, 2022, 202 : 136 - 143
  • [32] Classification of EEG-based motor imagery BCI by using ECOC
    Mobarezpour, Jahangir
    Khosrowabadi, Reza
    Ghaderi, Reza
    Navi, Keivan
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (02): : 23 - 33
  • [33] An advanced bispectrum features for EEG-based motor imagery classification
    Sun, Lei
    Feng, Zuren
    Lu, Na
    Wang, Beichen
    Zhang, Wenjun
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 131 (9-19) : 9 - 19
  • [34] Deep learning for motor imagery EEG-based classification: A review
    Al-Saegh, Ali
    Dawwd, Shefa A.
    Abdul-Jabbar, Jassim M.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
  • [35] Physics-Informed Attention Temporal Convolutional Network for EEG-Based Motor Imagery Classification
    Altaheri, Hamdi
    Muhammad, Ghulam
    Alsulaiman, Mansour
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 2249 - 2258
  • [36] TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI
    Liu, Xiaolin
    Shi, Rongye
    Hui, Qianxin
    Xu, Susu
    Wang, Shuai
    Na, Rui
    Sun, Ying
    Ding, Wenbo
    Zheng, Dezhi
    Chen, Xinlei
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [37] Standardization-refinement domain adaptation method for cross-subject EEG-based classification in imagined speech recognition
    Jimenez-Guarneros, Magdiel
    Gomez-Gil, Pilar
    PATTERN RECOGNITION LETTERS, 2021, 141 : 54 - 60
  • [38] Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
    Kim, Da-Hyun
    Shin, Dong-Hee
    Kam, Tae-Eui
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [39] Logistic Regression With Tangent Space-Based Cross-Subject Learning for Enhancing Motor Imagery Classification
    Gaur, Pramod
    Chowdhury, Anirban
    McCreadie, Karl
    Pachori, Ram Bilas
    Wang, Hui
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (03) : 1188 - 1197
  • [40] EEG-based Motor Imagery Classification Using Subject-Specific Spatio-Spectral Features
    Thomas, Kavitha P.
    Robinson, Neethu
    Vinod, A. P.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2302 - 2307