Temporal Focal Modulation Networks for EEG-Based Cross-Subject Motor Imagery Classification

被引:0
|
作者
Hameed, Adel [1 ,2 ]
Fourati, Rahma [1 ,3 ]
Ammar, Boudour [1 ]
Sanchez-Medina, Javier [4 ]
Ltifi, Hela [1 ,5 ]
机构
[1] Natl Engn Sch Sfax, Res Grp Intelligent Machines, Sfax 3038, Tunisia
[2] Univ Sfax, Natl Sch Elect & Telecommun Sfax, Sfax, Tunisia
[3] Univ Jendouba, Fac Sci Jurid Econ & Gest Jendouba, Jendouba 8189, Tunisia
[4] Univ Las Palmas Gran Canaria, Innovat Ctr Informat Soc, Las Palmas Gran Canaria, Spain
[5] Univ Kairouan, Fac Sci & Tech Sidi Bouzid, Dept Comp Sci, Kairouan, Tunisia
来源
ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2024, PT II | 2024年 / 2166卷
关键词
Electroencephalography; Motor imagery; Transformer; Focal Modulation Networks; TRANSFORMER;
D O I
10.1007/978-3-031-70259-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motor Imagery (MI) EEG decoding is crucial in Brain-Computer Interface (BCI) technology, facilitating direct communication between the brain and external devices. However, accurately capturing temporal dependencies in MI EEG signals, especially in subject-independent MI-BCIs, remains a persistent challenge. In this paper, we present Temporal-FocalNets, a novel framework designed to address this challenge by leveraging focal modulation techniques. Temporal-FocalNets efficiently prioritize temporal dynamics, thereby enhancing the accuracy and robustness of MI EEG decoding models. Through comprehensive experiments on benchmark datasets (2a and 2b), Temporal-FocalNets demonstrates superior performance compared to established baseline models. This innovation marks a significant advancement in subject-independent MI-BCIs, offering new possibilities for individuals with motor disabilities to interact with their environment using brain signals.
引用
收藏
页码:445 / 457
页数:13
相关论文
共 50 条
  • [31] Minima Possible Weights: A Homogenous Deep Ensemble Method for Cross-Subject Motor Imagery Classification
    Dinh, Quang Pham Lam
    Nambu, Isao
    IEEE ACCESS, 2025, 13 : 29134 - 29146
  • [32] EEG-based cross-subject passive music pitch perception using deep learning models
    Meng, Qiang
    Tian, Lan
    Liu, Guoyang
    Zhang, Xue
    COGNITIVE NEURODYNAMICS, 2025, 19 (01)
  • [33] Cross-Subject EEG-Based Emotion Recognition Using Deep Metric Learning and Adversarial Training
    Alameer, Hawraa Razzaq Abed
    Salehpour, Pedram
    Hadi Aghdasi, Seyyed
    Feizi-Derakhshi, Mohammad-Reza
    IEEE ACCESS, 2024, 12 : 130241 - 130252
  • [34] Cross-Subject EEG-Based Emotion Recognition via Semisupervised Multisource Joint Distribution Adaptation
    Jimenez-Guarneros, Magdiel
    Fuentes-Pineda, Gibran
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [35] Compact convolutional transformer for subject-independent motor imagery EEG-based BCIs
    Keutayeva, Aigerim
    Fakhrutdinov, Nail
    Abibullaev, Berdakh
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] ETCNet: An EEG-based motor imagery classification model combining efficient channel attention and temporal convolutional network
    Qin, Yuxin
    Li, Baojiang
    Wang, Wenlong
    Shi, Xingbin
    Wang, Haiyan
    Wang, Xichao
    BRAIN RESEARCH, 2024, 1823
  • [37] Shallow Inception Domain Adaptation Network for EEG-Based Motor Imagery Classification
    Huang, Xiuyu
    Choi, Kup-Sze
    Zhou, Nan
    Zhang, Yuanpeng
    Chen, Badong
    Pedrycz, Witold
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (02) : 521 - 533
  • [38] EEG-Based Motor Imagery Classification Using Multilayer Perceptron Neural Network
    Ferreira, S. K. S.
    Silveira, A. S.
    Pereira, A.
    XXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, 2022, : 1873 - 1878
  • [39] A Generalizable and Discriminative Learning Method for Deep EEG-Based Motor Imagery Classification
    Huang, Xiuyu
    Zhou, Nan
    Choi, Kup-Sze
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [40] Single-Source to Single-Target Cross-Subject Motor Imagery Classification Based on Multisubdomain Adaptation Network
    Chen, Yi
    Yang, Rui
    Huang, Mengjie
    Wang, Zidong
    Liu, Xiaohui
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 1992 - 2002