Temporal Focal Modulation Networks for EEG-Based Cross-Subject Motor Imagery Classification

被引:0
|
作者
Hameed, Adel [1 ,2 ]
Fourati, Rahma [1 ,3 ]
Ammar, Boudour [1 ]
Sanchez-Medina, Javier [4 ]
Ltifi, Hela [1 ,5 ]
机构
[1] Natl Engn Sch Sfax, Res Grp Intelligent Machines, Sfax 3038, Tunisia
[2] Univ Sfax, Natl Sch Elect & Telecommun Sfax, Sfax, Tunisia
[3] Univ Jendouba, Fac Sci Jurid Econ & Gest Jendouba, Jendouba 8189, Tunisia
[4] Univ Las Palmas Gran Canaria, Innovat Ctr Informat Soc, Las Palmas Gran Canaria, Spain
[5] Univ Kairouan, Fac Sci & Tech Sidi Bouzid, Dept Comp Sci, Kairouan, Tunisia
来源
ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2024, PT II | 2024年 / 2166卷
关键词
Electroencephalography; Motor imagery; Transformer; Focal Modulation Networks; TRANSFORMER;
D O I
10.1007/978-3-031-70259-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motor Imagery (MI) EEG decoding is crucial in Brain-Computer Interface (BCI) technology, facilitating direct communication between the brain and external devices. However, accurately capturing temporal dependencies in MI EEG signals, especially in subject-independent MI-BCIs, remains a persistent challenge. In this paper, we present Temporal-FocalNets, a novel framework designed to address this challenge by leveraging focal modulation techniques. Temporal-FocalNets efficiently prioritize temporal dynamics, thereby enhancing the accuracy and robustness of MI EEG decoding models. Through comprehensive experiments on benchmark datasets (2a and 2b), Temporal-FocalNets demonstrates superior performance compared to established baseline models. This innovation marks a significant advancement in subject-independent MI-BCIs, offering new possibilities for individuals with motor disabilities to interact with their environment using brain signals.
引用
收藏
页码:445 / 457
页数:13
相关论文
共 50 条
  • [11] Spatial Feature Regularization and Label Decoupling Based Cross-Subject Motor Imagery EEG Decoding
    Zhou, Yifan
    Luo, Tian-jian
    Zhang, Xiaochen
    Han, Te
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 407 - 423
  • [12] A class alignment network based on self-attention for cross-subject EEG classification
    Ma, Sufan
    Zhang, Dongxiao
    Wang, Jiayi
    Xie, Jialiang
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (01):
  • [13] Semi-supervised multi-source transfer learning for cross-subject EEG motor imagery classification
    Fan Zhang
    Hanliang Wu
    Yuxin Guo
    Medical & Biological Engineering & Computing, 2024, 62 : 1655 - 1672
  • [14] Semi-supervised multi-source transfer learning for cross-subject EEG motor imagery classification
    Zhang, Fan
    Wu, Hanliang
    Guo, Yuxin
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (06) : 1655 - 1672
  • [15] Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification
    Tan, Xiyue
    Wang, Dan
    Chen, Jiaming
    Xu, Meng
    BIOENGINEERING-BASEL, 2023, 10 (05):
  • [16] CTNet: a convolutional transformer network for EEG-based motor imagery classification
    Zhao, Wei
    Jiang, Xiaolu
    Zhang, Baocan
    Xiao, Shixiao
    Weng, Sujun
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [17] Constructing lightweight and efficient spiking neural networks for EEG-based motor imagery classification
    Liao, Xiaojian
    Li, Guang
    Wang, You
    Sun, Lining
    Zhang, Hongmiao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [18] Classification of EEG-based motor imagery BCI by using ECOC
    Mobarezpour, Jahangir
    Khosrowabadi, Reza
    Ghaderi, Reza
    Navi, Keivan
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (02): : 23 - 33
  • [19] An advanced bispectrum features for EEG-based motor imagery classification
    Sun, Lei
    Feng, Zuren
    Lu, Na
    Wang, Beichen
    Zhang, Wenjun
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 131 (9-19) : 9 - 19
  • [20] Deep learning for motor imagery EEG-based classification: A review
    Al-Saegh, Ali
    Dawwd, Shefa A.
    Abdul-Jabbar, Jassim M.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63