Temporal Focal Modulation Networks for EEG-Based Cross-Subject Motor Imagery Classification

被引:0
|
作者
Hameed, Adel [1 ,2 ]
Fourati, Rahma [1 ,3 ]
Ammar, Boudour [1 ]
Sanchez-Medina, Javier [4 ]
Ltifi, Hela [1 ,5 ]
机构
[1] Natl Engn Sch Sfax, Res Grp Intelligent Machines, Sfax 3038, Tunisia
[2] Univ Sfax, Natl Sch Elect & Telecommun Sfax, Sfax, Tunisia
[3] Univ Jendouba, Fac Sci Jurid Econ & Gest Jendouba, Jendouba 8189, Tunisia
[4] Univ Las Palmas Gran Canaria, Innovat Ctr Informat Soc, Las Palmas Gran Canaria, Spain
[5] Univ Kairouan, Fac Sci & Tech Sidi Bouzid, Dept Comp Sci, Kairouan, Tunisia
关键词
Electroencephalography; Motor imagery; Transformer; Focal Modulation Networks; TRANSFORMER;
D O I
10.1007/978-3-031-70259-4_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motor Imagery (MI) EEG decoding is crucial in Brain-Computer Interface (BCI) technology, facilitating direct communication between the brain and external devices. However, accurately capturing temporal dependencies in MI EEG signals, especially in subject-independent MI-BCIs, remains a persistent challenge. In this paper, we present Temporal-FocalNets, a novel framework designed to address this challenge by leveraging focal modulation techniques. Temporal-FocalNets efficiently prioritize temporal dynamics, thereby enhancing the accuracy and robustness of MI EEG decoding models. Through comprehensive experiments on benchmark datasets (2a and 2b), Temporal-FocalNets demonstrates superior performance compared to established baseline models. This innovation marks a significant advancement in subject-independent MI-BCIs, offering new possibilities for individuals with motor disabilities to interact with their environment using brain signals.
引用
收藏
页码:445 / 457
页数:13
相关论文
共 50 条
  • [1] Cross-Subject EEG Signal Classification with Deep Neural Networks Applied to Motor Imagery
    Riyad, Mouad
    Khalil, Mohammed
    Adib, Abdellah
    MOBILE, SECURE, AND PROGRAMMABLE NETWORKING, 2019, 11557 : 124 - 139
  • [2] Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition
    Li, Wenjie
    Li, Haoyu
    Sun, Xinlin
    Kang, Huicong
    An, Shan
    Wang, Guoxin
    Gao, Zhongke
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (02)
  • [3] Fusion Convolutional Neural Network for Cross-Subject EEG Motor Imagery Classification
    Roots, Karel
    Muhammad, Yar
    Muhammad, Naveed
    COMPUTERS, 2020, 9 (03) : 1 - 9
  • [4] Dual selections based knowledge transfer learning for cross-subject motor imagery EEG classification
    Luo, Tian-jian
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [5] A Multi-view Spatio-Temporal EEG Feature Learning for Cross-Subject Motor Imagery Classification
    Hameed, Adel
    Fourati, Rahma
    Ammar, Boudour
    Sanchez-Medina, Javier
    Ltifi, Hela
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2024, PT II, 2024, 2166 : 393 - 405
  • [6] Enhancing Cross-Subject Motor Imagery Classification in EEG-Based Brain-Computer Interfaces by Using Multi-Branch CNN
    Chowdhury, Radia Rayan
    Muhammad, Yar
    Adeel, Usman
    SENSORS, 2023, 23 (18)
  • [7] Deep temporal networks for EEG-based motor imagery recognition
    Sharma, Neha
    Upadhyay, Avinash
    Sharma, Manoj
    Singhal, Amit
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Deep temporal networks for EEG-based motor imagery recognition
    Neha Sharma
    Avinash Upadhyay
    Manoj Sharma
    Amit Singhal
    Scientific Reports, 13
  • [9] EEG-based Cross-subject Mental Fatigue Recognition
    Liu, Yisi
    Lan, Zirui
    Cui, Jian
    Sourina, Olga
    Muller-Wittig, Wolfgang
    2019 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2019, : 247 - 252
  • [10] Improving EEG-Based Motor Imagery Classification via Spatial and Temporal Recurrent Neural Networks
    Ma, Xuelin
    Qiu, Shuang
    Du, Changde
    Xing, Jiezhen
    He, Huiguang
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 1903 - 1906