Estimating the Training Performance of Generative Adversarial Networks by Image Quality

被引:0
作者
Chang, Kuei-Chung [1 ]
Lo, Ming-Ching [1 ]
机构
[1] Natl Yunlin Univ Sci & Technol, Int Grad Sch Artificial Intelligence, Touliu, Yunlin, Taiwan
来源
2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024 | 2024年
关键词
Generative Artificial intelligence; Generative Adversarial Network; hyperparameters; Image recognition;
D O I
10.1109/ICCE-Taiwan62264.2024.10674631
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generative adversarial networks (GANs) can address the problem when the number of training samples is insufficient for many fields of AI models. However, we observed that in Generative Adversarial Networks, the loss cannot directly indicate the quality of generated images. A low loss does not necessarily guarantee good image quality, and a high loss does not necessarily imply poor image quality. This paper discusses the impact of various hyperparameters on the quality of generated images. We also attempt to use a small dataset to create synthetic images of a certain quality using the proposed evaluation method in GANs.
引用
收藏
页码:447 / 448
页数:2
相关论文
共 5 条
  • [1] Goodfellow I.J., 2014, arXiv, DOI DOI 10.48550/ARXIV.1406.2661
  • [2] Heusel M., 2017, arXiv, DOI DOI 10.48550/ARXIV.1706.08500
  • [3] Recurrent Exposure Generation for Low-Light Face Detection[J]. Liang, Jinxiu;Wang, Jingwen;Quan, Yuhui;Chen, Tianyi;Liu, Jiaying;Ling, Haibin;Xu, Yong. IEEE TRANSACTIONS ON MULTIMEDIA, 2022
  • [4] Lu YT, 2019, IEEE IMAGE PROC, P3846, DOI [10.1109/icip.2019.8803539, 10.1109/ICIP.2019.8803539]
  • [5] Parameters selection of SVM for function approximation based on Differential Evolution[J]. Zhou, Shaowu;Wu, Lianghong;Yuan, Xiaofang;Wen, Tan. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007