Covariance Analysis of the Estimated Markov Parameters in a Subspace Identification Method

被引:0
|
作者
Ikeda, Kenji [1 ]
Tanaka, Hideyuki [2 ]
机构
[1] Tokushima Univ, Tokushima 7708506, Japan
[2] Hiroshima Univ, Higashihiroshima 7398524, Japan
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 15期
关键词
Identification; Subspace method; Covariance matrix; Kalman filters; MODEL IDENTIFICATION; ERROR;
D O I
10.1016/j.ifacol.2024.08.563
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is important to provide a covariance of the estimates to ensure the quality of the identification results. This paper proposes a covariance of the estimated Markov parameters in a method previously proposed by the authors. The proposed covariance uses the gap between singular subspaces to estimate the perturbation of the extended observability matrix. The gap based analysis gives a simple expression in the sense that the estimated error in the singular subspace is strictly linear with respect to the perturbation of the original matrix and the left and right singular vectors. Numerical simulation shows the validity of the proposed covariance of the estimated Markov parameters. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licneses/by-nc-nd/4.0/)
引用
收藏
页码:408 / 413
页数:6
相关论文
共 50 条
  • [31] Target detection and identification using canonical correlation analysis and subspace partitioning
    Wang, Wei
    Adali, Tuelay
    Emge, Darren
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2117 - +
  • [32] Consistency of noise covariance estimation in joint input-output closed-loop subspace identification with application in LQG benchmarking
    Pour, N. Danesh
    Huang, B.
    Shah, S. L.
    JOURNAL OF PROCESS CONTROL, 2009, 19 (10) : 1649 - 1657
  • [33] Estimation Error Analysis of System Matrices in Some Subspace Identification Methods
    Ikeda, Kenji
    Oku, Hiroshi
    2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [34] Experimental Model Identification of Liquid-Circular Angular Accelerometer using Subspace Method
    Wang Meiling
    Li Xiang
    Cheng Siyuan
    Fu Mengyin
    Xiao Meifeng
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2218 - 2222
  • [35] Spectral energy identification method of the linear observation model in the absence of a covariance function model
    Sergeev V.V.
    Denisova A.Y.
    Denisova, A. Yu., 1600, Izdatel'stvo Nauka (24): : 561 - 565
  • [36] Sensitivity analysis of subspace-based damage indicators under changes in ambient excitation covariance, severity and location of damage
    Aloisio, Angelo
    Di Battista, Luca
    Alaggio, Rocco
    Fragiacomo, Massimo
    ENGINEERING STRUCTURES, 2020, 208
  • [37] Canonical correlation analysis, approximate covariance extension, and identification of stationary time series
    Lindquist, A
    Picci, G
    AUTOMATICA, 1996, 32 (05) : 709 - 733
  • [38] The constitutive compatibility method for identification of material parameters based on full-field measurements
    Moussawi, Ali
    Lubineau, Gilles
    Florentin, Eric
    Blaysat, Benoit
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 265 : 1 - 14
  • [39] Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace
    Zhang, Cheng
    Lai, Chun-Liang
    Pettitt, B. Montgomery
    MOLECULAR SIMULATION, 2016, 42 (13) : 1079 - 1089
  • [40] A method of identification of DC motor parameters using computer
    Dlugosz, Marek
    Lerch, Tomasz
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (02): : 34 - 38