Covariance Analysis of the Estimated Markov Parameters in a Subspace Identification Method

被引:0
|
作者
Ikeda, Kenji [1 ]
Tanaka, Hideyuki [2 ]
机构
[1] Tokushima Univ, Tokushima 7708506, Japan
[2] Hiroshima Univ, Higashihiroshima 7398524, Japan
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 15期
关键词
Identification; Subspace method; Covariance matrix; Kalman filters; MODEL IDENTIFICATION; ERROR;
D O I
10.1016/j.ifacol.2024.08.563
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is important to provide a covariance of the estimates to ensure the quality of the identification results. This paper proposes a covariance of the estimated Markov parameters in a method previously proposed by the authors. The proposed covariance uses the gap between singular subspaces to estimate the perturbation of the extended observability matrix. The gap based analysis gives a simple expression in the sense that the estimated error in the singular subspace is strictly linear with respect to the perturbation of the original matrix and the left and right singular vectors. Numerical simulation shows the validity of the proposed covariance of the estimated Markov parameters. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licneses/by-nc-nd/4.0/)
引用
收藏
页码:408 / 413
页数:6
相关论文
共 50 条
  • [21] SUBSPACE METHOD FOR BLIND IDENTIFICATION OF CDMA TIME-VARYING CHANNELS
    Liu Yulin Peng Qicong (School of Communication and Information Engineering
    Journal of Electronics(China), 2002, (01) : 61 - 67
  • [22] Simultaneous Identification of Parameter and Time-delay Based on Subspace Method and Cross-correlation Function
    Wang, Jian-Guo
    Deng, Zhi-Fu
    Yang, Bang-Hua
    Ma, Shi-Wei
    Fei, Min-Rui
    Liu, Li-Lan
    Yao, Yuan
    Chen, Tao
    Wu, Yi-Ping
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 2287 - 2292
  • [23] Structure-Based Subspace Method for Multichannel Blind System Identification
    Mayyala, Qadri
    Abed-Meraim, Karim
    Zerguine, Azzedine
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (08) : 1183 - 1187
  • [24] The Identification Method of Robot Actuator Parameters
    Laray, Alexander
    Yukhimets, Dmitry
    2015 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2015, : 1624 - 1628
  • [25] On the selection of user-defined parameters in data-driven stochastic subspace identification
    Priori, C.
    De Angelis, M.
    Betti, R.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 100 : 501 - 523
  • [26] Deterministic-Stochastic Subspace Identification of the Modal Parameters of a Machine Tool During Milling
    Reichert, Willy
    Kolouch, Martin
    Berthold, Jan
    Ihlenfeldt, Steffen
    Engelmann, Max
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2025, 9 (02):
  • [27] Roll and Pitch Model Identification for Miniature Unmanned Helicopter Based on Subspace Method
    Bai, Meng
    Li, Min-hua
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 3059 - 3063
  • [28] A FOCUSS-based Subspace Method for Blind Identification Robust to Order Overestimation
    Zhou, Wuqiang
    Li, JingWei
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND INFORMATION TECHNOLOGY APPLICATIONS, 2016, 71 : 1475 - 1481
  • [29] An Introduction of a CCA Weighting Matrix to a Closed-Loop Subspace Identification Method
    Ikeda, Kenji
    Tanaka, Hideyuki
    IFAC PAPERSONLINE, 2021, 54 (07): : 761 - 766
  • [30] Extraction of modal parameters for identification of time-varying systems using data-driven stochastic subspace identification
    Li, Wenchao
    Viet-Hung Vu
    Liu, Zhaoheng
    Thomas, Marc
    Hazel, Bruce
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (20) : 4781 - 4796