Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

被引:0
作者
Leone, F. [1 ,2 ]
Caporali, A. [3 ,4 ]
Pascarella, A. [5 ]
Perciballi, C. [1 ,2 ]
Maddaluno, O. [1 ,2 ]
Basti, A. [7 ]
Belardinelli, P. [6 ]
Marzetti, L. [7 ,8 ]
Di Lorenzo, G. [2 ,9 ]
Betti, V. [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Psychol, Via Marsi 78, I-00185 Rome, Italy
[2] IRCCS Fdn Santa Lucia, Via Ardeatina 354, I-00179 Rome, Italy
[3] Univ Teramo, Fac Vet Med, Via R Balzarini 1, I-64100 Teramo, Italy
[4] Univ Camerino, Int Sch Adv Studies, Via Gentile 3 Da Varano, I-62032 Camerino, Italy
[5] CNR, Inst Computat Applicat, Rome, Italy
[6] Univ Trento, Ctr Mind Brain Sci, CIMeC, Via Regole 101, I-38123 Mattarello Trento, Italy
[7] G Annunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Via Vestini, I-66100 Chieti, Italy
[8] G Annunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Via Luigi Polacchi, I-66100 Chieti, Italy
[9] Univ Roma Tor Vergata, Lab Psychophysiol & Cognit Neurosci, Rome, Italy
基金
欧洲研究理事会;
关键词
EEG; Resting-state; Regularization parameter; Source reconstruction; Minimum Norm Estimation; Functional connectivity; CORTICAL CORRELATION STRUCTURE; SOURCE LOCALIZATION; HUMAN BRAIN; MEG; NETWORKS; DYNAMICS; MODEL;
D O I
10.1016/j.neuroimage.2024.120896
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10_2, while 10_ 1 has to be preferred when source localization only is at target.
引用
收藏
页数:12
相关论文
共 63 条
  • [31] A survey of methods used for source localization using EEG signals
    Jatoi, Munsif Ali
    Kamel, Nidal
    Malik, Aarnir Saeed
    Faye, Ibrahima
    Begum, Tahamina
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2014, 11 : 42 - 52
  • [32] Statistical inverse problems: Discretization, model reduction and inverse crimes
    Kaipio, Jari
    Somersalo, Erkki
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (02) : 493 - 504
  • [33] Task-positive and task-negative networks and their relation to depression: EEG beamformer analysis
    Knyazev, Gennady G.
    Savostyanov, Alexander N.
    Bocharov, Andrey V.
    Tamozhnikov, Sergey S.
    Saprigyn, Alexander E.
    [J]. BEHAVIOURAL BRAIN RESEARCH, 2016, 306 : 160 - 169
  • [34] Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG
    Krishnaswamy, Pavitra
    Obregon-Henao, Gabriel
    Ahveninen, Jyrki
    Khan, Sheraz
    Babadi, Behtash
    Iglesias, Juan Eugenio
    Hamalainen, Matti S.
    Purdon, Patrick L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (48) : E10465 - E10474
  • [35] Adding dynamics to the Human Connectome Project with MEG
    Larson-Prior, L. J.
    Oostenveld, R.
    Della Penna, S.
    Michalareas, G.
    Prior, F.
    Babajani-Feremi, A.
    Schoffelen, J. -M.
    Marzetti, L.
    de Pasquale, F.
    Di Pompeo, F.
    Stout, J.
    Woolrich, M.
    Luo, Q.
    Bucholz, R.
    Fries, P.
    Pizzella, V.
    Romani, G. L.
    Corbetta, M.
    Snyder, A. Z.
    [J]. NEUROIMAGE, 2013, 80 : 190 - 201
  • [36] Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain
    Lin, FH
    Witzel, T
    Hämäläinen, MS
    Dale, AM
    Belliveau, JW
    Stufflebeam, SM
    [J]. NEUROIMAGE, 2004, 23 (02) : 582 - 595
  • [37] Detecting Large-Scale Brain Networks Using EEG: Impact of Electrode Density, Head Modeling and Source Localization
    Liu, Quanying
    Ganzetti, Marco
    Wenderoth, Nicole
    Mantini, Dante
    [J]. FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [38] Detecting Large-Scale Networks in the Human Brain Using High-Density Electroencephalography
    Liu, Quanying
    Farahibozorg, Seyedehrezvan
    Porcaro, Camillo
    Wenderoth, Nicole
    Mantini, Dante
    [J]. HUMAN BRAIN MAPPING, 2017, 38 (09) : 4631 - 4643
  • [39] Encoding Manual Dexterity through Modulation of Intrinsic α Band Connectivity
    Maddaluno, Ottavia
    Della Penna, Stefania
    Pizzuti, Alessandra
    Spezialetti, Matteo
    Corbetta, Maurizio
    de Pasquale, Francesco
    Betti, Viviana
    [J]. JOURNAL OF NEUROSCIENCE, 2024, 44 (20)
  • [40] Frequency specific interactions of MEG resting state activity within and across brain networks as revealed by the multivariate interaction measure
    Marzetti, L.
    Della Penna, S.
    Snyder, A. Z.
    Pizzella, V.
    Nolte, G.
    de Pasquale, F.
    Romani, G. L.
    Corbetta, M.
    [J]. NEUROIMAGE, 2013, 79 : 172 - 183