Investigating the impact of the regularization parameter on EEG resting-state source reconstruction and functional connectivity using real and simulated data

被引:0
作者
Leone, F. [1 ,2 ]
Caporali, A. [3 ,4 ]
Pascarella, A. [5 ]
Perciballi, C. [1 ,2 ]
Maddaluno, O. [1 ,2 ]
Basti, A. [7 ]
Belardinelli, P. [6 ]
Marzetti, L. [7 ,8 ]
Di Lorenzo, G. [2 ,9 ]
Betti, V. [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Psychol, Via Marsi 78, I-00185 Rome, Italy
[2] IRCCS Fdn Santa Lucia, Via Ardeatina 354, I-00179 Rome, Italy
[3] Univ Teramo, Fac Vet Med, Via R Balzarini 1, I-64100 Teramo, Italy
[4] Univ Camerino, Int Sch Adv Studies, Via Gentile 3 Da Varano, I-62032 Camerino, Italy
[5] CNR, Inst Computat Applicat, Rome, Italy
[6] Univ Trento, Ctr Mind Brain Sci, CIMeC, Via Regole 101, I-38123 Mattarello Trento, Italy
[7] G Annunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Via Vestini, I-66100 Chieti, Italy
[8] G Annunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Via Luigi Polacchi, I-66100 Chieti, Italy
[9] Univ Roma Tor Vergata, Lab Psychophysiol & Cognit Neurosci, Rome, Italy
基金
欧洲研究理事会;
关键词
EEG; Resting-state; Regularization parameter; Source reconstruction; Minimum Norm Estimation; Functional connectivity; CORTICAL CORRELATION STRUCTURE; SOURCE LOCALIZATION; HUMAN BRAIN; MEG; NETWORKS; DYNAMICS; MODEL;
D O I
10.1016/j.neuroimage.2024.120896
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate EEG source localization is crucial for mapping resting-state network dynamics and it plays a key role in estimating source-level functional connectivity. However, EEG source estimation techniques encounter numerous methodological challenges, with a key one being the selection of the regularization parameter in minimum norm estimation. This choice is particularly intricate because the optimal amount of regularization for EEG source estimation may not align with the requirements of EEG connectivity analysis, highlighting a nuanced trade-off. In this study, we employed a methodological approach to determine the optimal regularization coefficient that yields the most effective reconstruction outcomes across all simulations involving varying signal-to-noise ratios for synthetic EEG signals. To this aim, we considered three resting state networks: the Motor Network, the Visual Network, and the Dorsal Attention Network. The performance was assessed using three metrics, at different regularization parameters: the Region Localization Error, source extension, and source fragmentation. The results were validated using real functional connectivity data. We show that the best estimate of functional connectivity is obtained using 10_2, while 10_ 1 has to be preferred when source localization only is at target.
引用
收藏
页数:12
相关论文
共 63 条
  • [1] The k-means Algorithm: A Comprehensive Survey and Performance Evaluation
    Ahmed, Mohiuddin
    Seraj, Raihan
    Islam, Syed Mohammed Shamsul
    [J]. ELECTRONICS, 2020, 9 (08) : 1 - 12
  • [2] Electromagnetic brain mapping
    Baillet, S
    Mosher, JC
    Leahy, RM
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) : 14 - 30
  • [3] Large-scale changes in network interactions as a physiological signature of spatial neglect
    Baldassarre, Antonello
    Ramsey, Lenny
    Hacker, Carl L.
    Callejas, Alicia
    Astafiev, Serguei V.
    Metcalf, Nicholas V.
    Zinn, Kristi
    Rengachary, Jennifer
    Snyder, Abraham Z.
    Carter, Alex R.
    Shulman, Gordon L.
    Corbetta, Maurizio
    [J]. BRAIN, 2014, 137 : 3267 - 3283
  • [4] Looking through the windows: a study about the dependency of phase-coupling estimates on the data length
    Basti, Alessio
    Chella, Federico
    Guidotti, Roberto
    Ermolova, Maria
    D'Andrea, Antea
    Stenroos, Matti
    Romani, Gian-Luca
    Pizzella, Vittorio
    Marzetti, Laura
    [J]. JOURNAL OF NEURAL ENGINEERING, 2022, 19 (01)
  • [5] Disclosing large-scale directed functional connections in MEG with the multivariate phase slope index
    Basti, Alessio
    Pizzella, Vittorio
    Chella, Federico
    Romani, Gian Luca
    Nolte, Guido
    Marzetti, Laura
    [J]. NEUROIMAGE, 2018, 175 : 161 - 175
  • [6] Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain
    Betti, Viviana
    Corbetta, Maurizio
    de Pasquale, Francesco
    Wens, Vincent
    Della Penna, Stefania
    [J]. JOURNAL OF NEUROSCIENCE, 2018, 38 (15) : 3858 - 3871
  • [7] Natural Scenes Viewing Alters the Dynamics of Functional Connectivity in the Human Brain
    Betti, Viviana
    Della Penna, Stefania
    de Pasquale, Francesco
    Mantini, Dante
    Marzetti, Laura
    Romanis, Gian Luca
    Corbetta, Maurizio
    [J]. NEURON, 2013, 79 (04) : 782 - 797
  • [8] FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI
    BISWAL, B
    YETKIN, FZ
    HAUGHTON, VM
    HYDE, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) : 537 - 541
  • [9] Investigating the electrophysiological basis of resting state networks using magnetoencephalography
    Brookes, Matthew J.
    Woolrich, Mark
    Luckhoo, Henry
    Price, Darren
    Hale, Joanne R.
    Stephenson, Mary C.
    Barnes, Gareth R.
    Smith, Stephen M.
    Morris, Peter G.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (40) : 16783 - 16788
  • [10] Brain Activity Mapping from MEG Data via a Hierarchical Bayesian Algorithm with Automatic Depth Weighting
    Calvetti, Daniela
    Pascarella, Annalisa
    Pitolli, Francesca
    Somersalo, Erkki
    Vantaggi, Barbara
    [J]. BRAIN TOPOGRAPHY, 2019, 32 (03) : 363 - 393