Hyperbolic hyperbolic-by-cyclic groups are cubulable

被引:0
作者
Dahmani, Francois [1 ,2 ]
Satish, Suraj krishna meda [3 ]
Mutanguha, Jean pierre [4 ]
机构
[1] Univ Montreal, CNRS, IRL CRM, Montreal, PQ, Canada
[2] Univ Grenoble Alpes, Inst Fourier, Lab Math, Grenoble, France
[3] Ashoka Univ, Dept Math, Sonipat, Haryana, India
[4] Princeton Univ, Dept Math, Princeton, NJ USA
关键词
AUTOMORPHISMS; BOUNDARY;
D O I
10.2140/gt.2025.29.259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the mapping torus of a hyperbolic group by a hyperbolic automorphism is cubulable. Alongthe way, we give an alternate proof of Hagen and Wise's theorem that hyperbolic free-by-cyclic groups arecubulable, and extend to the case with torsion Brinkmann's thesis that a torsion-free hyperbolic-by-cyclicgroup is hyperbolic if and only if it does not containZ2-subgroups.
引用
收藏
页码:259 / 268
页数:11
相关论文
共 50 条
  • [41] VOLUME ENTROPY OF HYPERBOLIC BUILDINGS
    Ledrappier, Francois
    Lim, Seonhee
    JOURNAL OF MODERN DYNAMICS, 2010, 4 (01) : 139 - 165
  • [42] QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES
    Behrstock, Jason
    Hagen, Mark F.
    Sisto, Alessandro
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (05) : 909 - 996
  • [43] Local limit theorems in relatively hyperbolic groups II: the non-spectrally degenerate case
    Dussaule, Matthieu
    COMPOSITIO MATHEMATICA, 2022, 158 (04) : 764 - 830
  • [44] HIERARCHICALLY HYPERBOLIC SPACES II: COMBINATION THEOREMS AND THE DISTANCE FORMULA
    Behrstock, Jason
    Hagen, Mark
    Sisto, Alessandro
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 299 (02) : 257 - 338
  • [45] Counting subgraphs in hyperbolic graphs with symmetry
    Calegari, Danny
    Fujiwara, Koji
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (03) : 1213 - 1226
  • [46] Symmetry and topology of hyperbolic Haldane models
    Chen, Anffany
    Guan, Yifei
    Lenggenhager, Patrick M.
    Maciejko, Joseph
    Boettcher, Igor
    Bzdusek, Tomas
    PHYSICAL REVIEW B, 2023, 108 (08)
  • [47] Irreducible nonsurjective endomorphisms ofFnare hyperbolic
    Mutanguha, Jean Pierre
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (05) : 960 - 976
  • [48] On nonlinear Schrodinger equations on the hyperbolic space
    Cencelj, Matija
    Farago, Istvan
    Horvath, Robert
    Repovs, Dusan D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
  • [49] SINGULAR-HYPERBOLIC ATTRACTORS ARE CHAOTIC
    Araujo, V.
    Pacifico, M. J.
    Pujals, E. R.
    Viana, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2431 - 2485
  • [50] On the volume of singular-hyperbolic sets
    Alves, J. F.
    Araujo, V.
    Pacifico, M. J.
    Pinheiro, V.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2007, 22 (03): : 249 - 267