Hyperbolic hyperbolic-by-cyclic groups are cubulable

被引:0
|
作者
Dahmani, Francois [1 ,2 ]
Satish, Suraj krishna meda [3 ]
Mutanguha, Jean pierre [4 ]
机构
[1] Univ Montreal, CNRS, IRL CRM, Montreal, PQ, Canada
[2] Univ Grenoble Alpes, Inst Fourier, Lab Math, Grenoble, France
[3] Ashoka Univ, Dept Math, Sonipat, Haryana, India
[4] Princeton Univ, Dept Math, Princeton, NJ USA
关键词
AUTOMORPHISMS; BOUNDARY;
D O I
10.2140/gt.2025.29.259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the mapping torus of a hyperbolic group by a hyperbolic automorphism is cubulable. Alongthe way, we give an alternate proof of Hagen and Wise's theorem that hyperbolic free-by-cyclic groups arecubulable, and extend to the case with torsion Brinkmann's thesis that a torsion-free hyperbolic-by-cyclicgroup is hyperbolic if and only if it does not containZ2-subgroups.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Proper isometric actions of hyperbolic groups on LP-spaces
    Nica, Bogdan
    COMPOSITIO MATHEMATICA, 2013, 149 (05) : 773 - 792
  • [32] Fixed subgroups of automorphisms of hyperbolic 3-manifold groups
    Lin, Jianfeng
    Wang, Shicheng
    TOPOLOGY AND ITS APPLICATIONS, 2014, 173 : 175 - 187
  • [33] Greenberg's theorem for quasiconvex subgroups of word hyperbolic groups
    Kapovich, I
    Short, H
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (06): : 1224 - 1244
  • [34] Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings
    Horbez, Camille
    JOURNAL OF TOPOLOGY, 2016, 9 (02) : 401 - 450
  • [35] Hyperbolic components
    Milnor, John
    CONFORMAL DYNAMICS AND HYPERBOLIC GEOMETRY, 2012, 573 : 183 - 232
  • [36] HYPERBOLIC RIGIDITY OF HIGHER RANK LATTICES
    Haettel, Thomas
    Guirardel, Vincent
    Horbez, Camille
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2020, 53 (02): : 439 - 468
  • [37] LOCAL LIMIT THEOREM FOR SYMMETRIC RANDOM WALKS IN GROMOV-HYPERBOLIC GROUPS
    Gouezel, Sebastien
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (03) : 893 - 928
  • [38] A Liouville hyperbolic souvlaki
    Carmesin, Johannes
    Federici, Bruno
    Georgakopoulos, Agelos
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [39] Hyperbolic right-angled Coxeter groups with boundaries as a Sierpinski carpet and a Menger curve
    Chinen, Naotsugu
    Hosaka, Tetsuya
    TOPOLOGY AND ITS APPLICATIONS, 2019, 260 : 70 - 85
  • [40] A hyperbolic Out(Fn)-complex
    Bestvina, Mladen
    Feighn, Mark
    GROUPS GEOMETRY AND DYNAMICS, 2010, 4 (01) : 31 - 58