Multi-objective optimization of buckling load and natural frequency in functionally graded porous nanobeams using non-dominated sorting genetic Algorithm-II

被引:0
|
作者
Liu, Hao [1 ]
Basem, Ali [2 ]
Jasim, Dheyaa J. [3 ]
Hashemian, Mohammad [4 ]
Eftekhari, S. Ali [4 ]
Al-fanhrawi, Halah Jawad [5 ]
Abdullaeva, Barno [6 ]
Salahshour, Soheil [7 ,8 ,9 ]
机构
[1] Hengshui Univ, Electromech Res Inst, Hengshui 053000, Peoples R China
[2] Warith Al Anbiyaa Univ, Fac Engn, Karbala 56001, Iraq
[3] Al Amarah Univ Coll, Dept Chem Engn & Petr Ind, Maysan, Iraq
[4] Islamic Azad Univ, Dept Mech Engn, Khomeinishahr Branch, Khomeinishahr, Iran
[5] Al Mustaqbal Univ, Res & Studies Unit, Hillah 51001, Babylon, Iraq
[6] Tashkent State Pedag Univ, Dept Math & Informat Technol, Sci Affairs, Tashkent, Uzbekistan
[7] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[8] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[9] Piri Reis Univ, Fac Sci & Letters, Istanbul, Turkiye
关键词
Nondominated sorting; Genetic algorithm; Surface effect; Porous nanobeam; Nonlocal strain gradient theory; Artificial neural networks; VIBRATION;
D O I
10.1016/j.engappai.2024.109938
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the fundamental natural frequency and critical buckling load of Functionally Graded Porous nanobeams supported by an elastic medium, addressing the need for optimized designs in advanced nanostructures. Utilizing a Genetic Algorithm and Non-Dominated Sorting Genetic Algorithm-II, the research aims to identify the Pareto front for these two objectives while incorporating surface effects. The nanobeam is modeled using Nonlocal Strain Gradient Theory and Gurtin-Murdoch surface elasticity theory, with governing equations solved via the Generalized Differential Quadrature Method based on Reddy's Third-order Shear Deformation Theory. Key input parameters, including temperature gradient, residual surface stress, porosity, and elastic foundation properties, are varied to train two Artificial Neural Networks for output prediction. Results indicate that for the fundamental frequency, significant factors include the material length scale and the Pasternak shear foundation parameter, while the critical buckling load is mainly influenced by the temperature gradient and the same material parameters. These findings provide critical insights for designers, allowing them to make informed decisions based on optimal values for eight input parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multi-Objective Optimization of Functionally Graded Beams Using a Genetic Algorithm with Non-Dominated Sorting
    Wu, Chih-Ping
    Li, Kuan-Wei
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (04):
  • [2] Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II
    Garg, Mohinder P.
    Jain, Ajai
    Bhushan, Gian
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2012, 226 (A12) : 1986 - 2001
  • [3] A Non-dominated Sorting Firefly Algorithm for Multi-Objective Optimization
    Tsai, Chun-Wei
    Huang, Yao-Ting
    Chiang, Ming-Chao
    2014 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2014), 2014,
  • [4] A non-dominated sorting hybrid algorithm for multi-objective optimization of engineering problems
    Ghiasi, Hossein
    Pasini, Damiano
    Lessard, Larry
    ENGINEERING OPTIMIZATION, 2011, 43 (01) : 39 - 59
  • [5] Multi-Objective Optimization For Proportional Tuition Fees Assessment Using Non-Dominated Sorting Genetic Algorithm II (NSGA II)
    Jauhari, Farid
    Mahmudy, Wayan Firdaus
    Basuki, Achmad
    PROCEEDINGS OF 2018 3RD INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2018), 2018, : 292 - 297
  • [6] Non-Dominated Sorting Social Group Optimization Algorithm for Multi-Objective Optimization
    Naik, Anima
    Jena, Junali Jasmine
    Satapathy, Suresh Chandra
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2021, 80 (02): : 129 - 136
  • [7] Multi-objective optimization of oil well drilling using elitist non-dominated sorting genetic algorithm
    Chandan Guria
    Kiran K Goli
    Akhilendra K Pathak
    Petroleum Science, 2014, (01) : 97 - 110
  • [8] Multi-objective optimization of oil well drilling using elitist non-dominated sorting genetic algorithm
    Guria, Chandan
    Goli, Kiran K.
    Pathak, Akhilendra K.
    PETROLEUM SCIENCE, 2014, 11 (01) : 97 - 110
  • [9] Non-Dominated Sorted Genetic Algorithm-II Algorithm- based Multi-objective Layout Optimization of Solid Wood Panels
    Wang, Baogang
    Yang, Chunmei
    Ding, Yucheng
    BIORESOURCES, 2022, 17 (01) : 94 - 108
  • [10] An Improved Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization Based on Crowding Distance
    Xia, Tian-liang
    Zhang, Shao-hua
    COMPUTATIONAL INTELLIGENCE, NETWORKED SYSTEMS AND THEIR APPLICATIONS, 2014, 462 : 66 - 76