AN INVARIANCE PRINCIPLE FOR THE 1D KPZ EQUATION

被引:0
作者
Adhikari, Arka [1 ]
Chatterjee, Sourav [1 ,2 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA USA
关键词
KPZ equation; scaling limit; invariance principle; KPZ universality; END-POINT DISTRIBUTION; DIRECTED POLYMERS; LIMIT;
D O I
10.1214/23-AOP1660
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a discrete one-dimensional random surface whose height at a point grows as a function of the heights at neighboring points, plus an independent random noise. Assuming that this function is equivariant under constant shifts, symmetric in its arguments, and at least six times continuously differentiable in a neighborhood of the origin, we show that, as the variance of the noise goes to zero, any such process converges to the Cole-Hopf solution of the 1D KPZ equation under a suitable scaling of space and time. This proves an invariance principle for the 1D KPZ equation in the spirit of Donsker's invariance principle for Brownian motion.
引用
收藏
页码:2019 / 2050
页数:32
相关论文
共 50 条
  • [31] KPZ equation: Galilean-invariance violation, consistency, and fluctuation-dissipation issues in real-space discretization
    Wio, H. S.
    Revelli, J. A.
    Deza, R. R.
    Escudero, C.
    de la Lama, M. S.
    EPL, 2010, 89 (04)
  • [32] Renormalized-generalized solutions for the KPZ equation
    Catuogno, Pedro
    Olivera, Christian
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2014, 17 (04)
  • [33] Space-Time Discrete KPZ Equation
    Cannizzaro, G.
    Matetski, K.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 358 (02) : 521 - 588
  • [34] The 1D Kardar-Parisi-Zhang equation: Height distribution and universality
    Sasamoto, Tomohiro
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (02):
  • [35] Non-stationary KPZ equation from ASEP with slow bonds
    Yang, Kevin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1246 - 1294
  • [36] Local well-posedness of 1D degenerate drift diffusion equation
    Mai, La-Su
    Antonelli, Paolo
    Forcella, Luigi
    MATHEMATICS IN ENGINEERING, 2024, 6 (01): : 155 - 172
  • [37] FLUCTUATION EXPONENT OF THE KPZ/STOCHASTIC BURGERS EQUATION
    Balazs, M.
    Quastel, J.
    Seppaelaeinen, T.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) : 683 - 708
  • [38] Invariance principle for nonhomogeneous random walks on the grid ℤ1
    D. A. Yarotskii
    Mathematical Notes, 1999, 66 : 372 - 383
  • [39] Kpz equation with fractional derivatives of white noise
    Hoshino M.
    Stochastics and Partial Differential Equations: Analysis and Computations, 2016, 4 (4): : 827 - 890
  • [40] Kpz equation, its renormalization and invariant measures
    Funaki T.
    Quastel J.
    Stochastic Partial Differential Equations: Analysis and Computations, 2015, 3 (2) : 159 - 220