Compact Kahler manifolds with quasi-positive second Chern-Ricci curvature

被引:0
作者
Yang, Xiaokui [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
HOLOMORPHIC SECTIONAL CURVATURE; SINGULAR HERMITIAN METRICS; PROJECTIVE-MANIFOLDS; RATIONAL CONNECTEDNESS; LINE BUNDLES; VARIETIES; THEOREM; UNIFORMIZATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact Kahler manifold. We prove that if X admits a smooth Hermitian metric omega with quasi-positive second Chern-Ricci curvature Ric((2))(omega), then X is projective and rationally connected. In particular, X is simply connected.
引用
收藏
页码:2717 / 2734
页数:18
相关论文
共 69 条
[61]  
Wu HH, 2002, J DIFFER GEOM, V61, P263, DOI 10.4310/jdg/1090351386
[62]   RC-POSITIVITY, VANISHING THEOREMS AND RIGIDITY OF HOLOMORPHIC MAPS [J].
Yang, Xiaokui .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2021, 20 (03) :1023-1038
[63]   RC-positive metrics on rationally connected manifolds [J].
Yang, Xiaokui .
FORUM OF MATHEMATICS SIGMA, 2020, 8
[64]   A partial converse to the Andreotti-Grauert theorem [J].
Yang, Xiaokui .
COMPOSITIO MATHEMATICA, 2019, 155 (01) :89-99
[65]   ON REAL BISECTIONAL CURVATURE FOR HERMITIAN MANIFOLDS [J].
Yang, Xiaokui ;
Zheng, Fangyang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (04) :2703-2718
[66]   RC-positivity, rational connectedness and Yau's conjecture [J].
Yang, Xiaokui .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2018, 6 (02) :183-212
[67]  
Yang Yan18b Xiaokui, 2024, J DIFFER GEOM, V128, P1315
[68]  
Yau S.-T., 1982, ANN MATH STUD, P669
[69]   RICCI CURVATURE OF A COMPACT KAHLER MANIFOLD AND COMPLEX MONGE-AMPERE EQUATION .1. [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (03) :339-411