Compact Kahler manifolds with quasi-positive second Chern-Ricci curvature

被引:0
作者
Yang, Xiaokui [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
国家重点研发计划;
关键词
HOLOMORPHIC SECTIONAL CURVATURE; SINGULAR HERMITIAN METRICS; PROJECTIVE-MANIFOLDS; RATIONAL CONNECTEDNESS; LINE BUNDLES; VARIETIES; THEOREM; UNIFORMIZATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact Kahler manifold. We prove that if X admits a smooth Hermitian metric omega with quasi-positive second Chern-Ricci curvature Ric((2))(omega), then X is projective and rationally connected. In particular, X is simply connected.
引用
收藏
页码:2717 / 2734
页数:18
相关论文
共 69 条
[1]  
Aronszajn N., 1957, J. Math. Pures Appl, V36, P235
[2]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[3]  
Boucksom S, 2013, J ALGEBRAIC GEOM, V22, P201
[4]  
Campana F, 2015, LOND MATH S, V417, P71
[5]  
CAMPANA F, 1992, ANN SCI ECOLE NORM S, V25, P539
[6]   PROJECTIVE-MANIFOLDS WHOSE TANGENT-BUNDLES ARE NUMERICALLY EFFECTIVE [J].
CAMPANA, F ;
PETERNELL, T .
MATHEMATISCHE ANNALEN, 1991, 289 (01) :169-187
[7]   A DECOMPOSITION THEOREM FOR PROJECTIVE MANIFOLDS WITH NEF ANTICANONICAL BUNDLE [J].
Cao, Junyan ;
Hoering, Andreas .
JOURNAL OF ALGEBRAIC GEOMETRY, 2019, 28 (03) :567-597
[8]   Manifolds with nef anticanonical bundle [J].
Cao, Junyan ;
Horing, Andreas .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 724 :203-244
[9]   Rational Curves on Complex Manifolds [J].
Cascini, Paolo .
MILAN JOURNAL OF MATHEMATICS, 2013, 81 (02) :291-315
[10]  
Chau A, 2012, J DIFFER GEOM, V92, P187, DOI 10.4310/jdg/1352297805