Event-Based Depth Prediction With Deep Spiking Neural Network

被引:2
作者
Wu, Xiaoshan [1 ]
He, Weihua [2 ]
Yao, Man [4 ]
Zhang, Ziyang [3 ]
Wang, Yaoyuan [3 ]
Xu, Bo [4 ]
Li, Guoqi [4 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[2] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
[3] Huawei Technol Co Ltd, Adv Comp & Storage Lab, Beijing 100095, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金; 北京市自然科学基金;
关键词
Cameras; Estimation; Task analysis; Training; Computational modeling; Degradation; Data models; Depth estimation; event camera; neuromorphic computing; spiking neural network (SNN);
D O I
10.1109/TCDS.2024.3406168
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event cameras have gained popularity in depth estimation due to their superior features such as high-temporal resolution, low latency, and low-power consumption. Spiking neural network (SNN) is a promising approach for processing event camera inputs due to its spike-based event-driven nature. However, SNNs face performance degradation when the network becomes deeper, affecting their performance in depth estimation tasks. To address this issue, we propose a deep spiking U-Net model. Our spiking U-Net architecture leverages refined shortcuts and residual blocks to avoid performance degradation and boost task performance. We also propose a new event representation method designed for multistep SNNs to effectively utilize depth information in the temporal dimension. Our experiments on MVSEC dataset show that the proposed method improves accuracy by 18.50% and 25.18% compared to current state-of-the-art (SOTA) ANN and SNN models, respectively. Moreover, the energy efficiency can be improved up to 58 times by our proposed SNN model compared with the corresponding ANN with the same network structure.
引用
收藏
页码:2008 / 2018
页数:11
相关论文
共 43 条
[1]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[2]  
Bhat SF, 2023, Arxiv, DOI [arXiv:2302.12288, DOI 10.48550/ARXIV.2302.12288]
[3]   Deep Optics for Monocular Depth Estimation and 3D Object Detection [J].
Chang, Julie ;
Wetzstein, Gordon .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :10192-10201
[4]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99
[5]   Designing for Depth Perceptions in Augmented Reality [J].
Diaz, Catherine ;
Walker, Michael ;
Szafir, Danielle Albers ;
Szafir, Daniel .
PROCEEDINGS OF THE 2017 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR), 2017, :111-122
[6]   Towards Real-Time Monocular Depth Estimation for Robotics: A Survey[-5pt] [J].
Dong, Xingshuai ;
Garratt, Matthew A. ;
Anavatti, Sreenatha G. ;
Abbass, Hussein A. .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) :16940-16961
[7]  
Eigen D, 2014, ADV NEUR IN, V27
[8]   SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence [J].
Fang, Wei ;
Chen, Yanqi ;
Ding, Jianhao ;
Yu, Zhaofei ;
Masquelier, Timothee ;
Chen, Ding ;
Huang, Liwei ;
Zhou, Huihui ;
Li, Guoqi ;
Tian, Yonghong .
SCIENCE ADVANCES, 2023, 9 (40)
[9]   Analytical Review of Event-Based Camera Depth Estimation Methods and Systems [J].
Furmonas, Justas ;
Liobe, John ;
Barzdenas, Vaidotas .
SENSORS, 2022, 22 (03)
[10]   Event-Based Vision: A Survey [J].
Gallego, Guillermo ;
Delbruck, Tobi ;
Orchard, Garrick Michael ;
Bartolozzi, Chiara ;
Taba, Brian ;
Censi, Andrea ;
Leutenegger, Stefan ;
Davison, Andrew ;
Conradt, Jorg ;
Daniilidis, Kostas ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :154-180