Genome-wide characterization and expression analysis of WRKY transcription factors reveals biotic stress response potential mechanisms in Panax notoginseng

被引:0
|
作者
Li, Jianbin [1 ,2 ,4 ]
Li, Leilin [1 ,2 ]
Hou, Jiae [1 ,2 ]
Ai, Mingtao [1 ,2 ]
Liu, Tiantai [1 ,2 ]
Yu, Saiying [1 ,2 ]
Cui, Xiuming [1 ,2 ,3 ,4 ]
Yang, Qian [1 ,2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Fac Life Sci & Technol, Kunming 650000, Peoples R China
[2] Key Lab Panax Notoginseng Resources Sustainable De, Kunming 650000, Peoples R China
[3] Yunnan Prov Key Lab Panax Notoginseng, Kunming 650000, Peoples R China
[4] Southwest United Grad Sch, Kunming 650000, Peoples R China
关键词
WRKY transcription factors; Panax notoginseng; Biotic stress; Melatonin; Salicylic acid; Jasmonic acid; DNA-BINDING PROTEINS; GENE FAMILY; ARABIDOPSIS; IDENTIFICATION; ACTIVATION; PROMOTERS;
D O I
10.1016/j.pmpp.2024.102432
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
WRKY transcription factors (TFs), among the largest families of transcriptional regulators, are essential players in defense responses in plants. Panax notoginseng, a traditional and precious herbal medicine in China, is widely cultivated due to its excellent medicinal and edible value. However, P. notoginseng is frequently affected by various diseases (like Black blot disease, Root rot disease and Viral diseases). Therefore, the present study aimed to identify and characterize PnWRKYs in the P. notoginseng genome, reveal their structural attributes, regulatory elements, and potential functions in defense responses. 68 PnWRKY TFs that have conserved domains and different physicochemical characteristics were identified in the genome. They can be divided into four groups according to phylogenetic relationships and conserved domain structures. Furthermore, Group II WRKY TFs can be classified into five subgroups (IIa, IIb, IIc, IId, and IIe) according to their zinc finger-like motif. The PnWRKY family expands mainly via segmental duplication. Additionally, the promoter regions of PnWRKYs contain many hormone-responsive and stress-responsive elements. Expression patterns under different hormones (salicylic acid, methyl jasmonate, and melatonin) and disease (root rot disease, black blot disease, and virus disease) treatment analysis highlighted their wide involvement in plant hormone-induced disease defense responses. These findings affirmed the potential functions of PnWRKY TFs in disease-mediated defense responses and provided valuable insights for future agricultural applications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng
    Peng Di
    Ping Wang
    Min Yan
    Peng Han
    Xinyi Huang
    Le Yin
    Yan Yan
    Yonghua Xu
    Yingping Wang
    BMC Genomics, 22
  • [2] Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng
    Di, Peng
    Wang, Ping
    Yan, Min
    Han, Peng
    Huang, Xinyi
    Yin, Le
    Yan, Yan
    Xu, Yonghua
    Wang, Yingping
    BMC GENOMICS, 2021, 22 (01)
  • [3] Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses
    Jiang, Yuanzhong
    Duan, Yanjiao
    Yin, Jia
    Ye, Shenglong
    Zhu, Jingru
    Zhang, Faqi
    Lu, Wanxiang
    Fan, Di
    Luo, Keming
    JOURNAL OF EXPERIMENTAL BOTANY, 2014, 65 (22) : 6629 - 6644
  • [4] Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches' broom disease
    Monteiro de Almeida, Dayanne Silva
    Jordao Do Amaral, Daniel Oliveira
    Del-Bem, Luiz-Eduardo
    dos Santos, Emily Bronze
    Santana Silva, Raner Jose
    Gramacho, Karina Peres
    Vincentz, Michel
    Micheli, Fabienne
    PLOS ONE, 2017, 12 (10):
  • [5] Genome-wide identification of soybean WRKY transcription factors in response to salt stress
    Yu, Yanchong
    Wang, Nan
    Hu, Ruibo
    Xiang, Fengning
    SPRINGERPLUS, 2016, 5
  • [6] Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng
    Chu, Yang
    Xiao, Shuiming
    Su, He
    Liao, Baosheng
    Zhang, Jingjing
    Xu, Jiang
    Chen, Shilin
    ACTA PHARMACEUTICA SINICA B, 2018, 8 (04) : 666 - 677
  • [7] Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses
    Zhaobin Jing
    Zhande Liu
    Genes & Genomics, 2018, 40 : 429 - 446
  • [8] Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses
    Jing, Zhaobin
    Liu, Zhande
    GENES & GENOMICS, 2018, 40 (04) : 429 - 446
  • [9] Genome-wide identification and expression pattern analysis of WRKY transcription factors in response to biotic and abiotic stresses in tea plants ( Camellia sinensis )
    Liu, Nana
    Wu, Feixue
    Li, Caiyun
    Yang, Yi
    Yu, Antai
    Wang, Ziteng
    Zhao, Lei
    Zhang, Xinfu
    Qu, Fengfeng
    Gao, Liping
    Xia, Tao
    Wang, Peiqiang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 211
  • [10] Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Siraitia siamensis
    Mu, Detian
    Chen, Wenqiang
    Shao, Yingying
    Wilson, Iain W.
    Zhao, Huan
    Luo, Zuliang
    Lin, Xiaodong
    He, Jialong
    Zhang, Yuan
    Mo, Changming
    Qiu, Deyou
    Tang, Qi
    PLANTS-BASEL, 2023, 12 (02):