Quantum error-correcting codes from projective Reed-Muller codes and their hull variation problem

被引:0
作者
Ruano, Diego [1 ]
San-Jose, Rodrigo [1 ]
机构
[1] Univ Valladolid, IMUVA Math Res Inst, Valladolid 47011, Spain
关键词
Projective Reed-Muller codes; quantum codes; subfield subcodes; Hermitian product; hull;
D O I
10.1142/S0219498825410099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Long quantum codes using projective Reed-Muller codes are constructed. Projective Reed-Muller codes are evaluation codes obtained by evaluating homogeneous polynomials at the projective space. We obtain asymmetric and symmetric quantum codes by using the CSS construction and the Hermitian construction, respectively. We provide entanglement-assisted quantum error-correcting codes from projective Reed-Muller codes with flexible amounts of entanglement by considering equivalent codes. Moreover, we also construct quantum codes from subfield subcodes of projective Reed-Muller codes.
引用
收藏
页数:15
相关论文
共 29 条
  • [11] Galindo C., Hernando F., Matsumoto R., Ruano D., Asymmetric entanglement-assisted quantum error-correcting codes and BCH codes, IEEE Access, 8, pp. 18571-18579, (2020)
  • [12] Ghorpade S. R., Ludhani R., On the minimum distance, minimum weight codewords, and the dimension of projective Reed-Muller codes, Adv. Math. Commun, 18, 2, pp. 360-382, (2024)
  • [13] Gimenez P., Ruano D., San-Jose R., Entanglement-assisted quantum error-correcting codes from subfield subcodes of projective Reed-Solomon codes, Comput. Appl. Math, 42, (2023)
  • [14] Gimenez P., Ruano D., San-Jose R., Subfield subcodes of projective Reed-Muller codes, Finite Fields Appl, 94, (2024)
  • [15] Grassl M., Bounds on the minimum distance of linear codes and quantum codes, (2007)
  • [16] Ioffe L., Mezard M., Asymmetric quantum error-correcting codes, Phys. Rev. A, 75, (2007)
  • [17] Kasami T., Lin S., Peterson W. W., New generalizations of the Reed-Muller codes. I. Primitive codes, IEEE Trans. Inform. Theory, IT-14, pp. 189-199, (1968)
  • [18] Ketkar A., Klappenecker A., Kumar S., Sarvepalli P. K., Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 52, 11, pp. 4892-4914, (2006)
  • [19] Lachaud G., The parameters of projective Reed-Muller codes, Discrete Math, 81, 2, pp. 217-221, (1990)
  • [20] Luo G., Ezerman M. F., Grassl M., Ling S., Constructing quantum error-correcting codes that require a variable amount of entanglement, Quantum Inf. Process, 23, 1, (2024)