Unveiling soil coherence patterns along Etihad Rail using Sentinel-1 and Sentinel-2 data and machine learning in arid region

被引:0
|
作者
Alyounis, Sona [1 ]
Al Momani, Delal E. [2 ]
Gafoor, Fahim Abdul [2 ]
Alansari, Zaineb [2 ]
Al Hashemi, Hamed [3 ]
AlShehhi, Maryam R. [2 ]
机构
[1] Khalifa Univ, Healthcare Engn Innovat Ctr HEIC, Dept Biomed Engn, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Dept Civil & Environm Engn, POB 127788, Abu Dhabi, U Arab Emirates
[3] UAE Space Agcy Abu Dhabi, Space Mission Dept, Abu Dhabi, U Arab Emirates
关键词
Soil coherence; Sentinel-1; SAR/Sentinel-2; Machine learning; Etihad Rail; Arid region;
D O I
10.1016/j.rsase.2024.101374
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research applies machine learning to predict soil coherence for Etihad Rail, marking the first comprehensive study in the United Arab Emirates (UAE)'s arid regions. By integrating Sentinel-1 SAR and Sentinel-2 data with MODIS Aerosol Optical Depth (AOD) observations, the study develops detailed models that depict complex soil coherence patterns crucial for urban planning and risk assessment. Findings show variations in soil coherence between operational and underconstruction phases, influenced by seasonal changes in aerosol dynamics and sand dust levels. Higher soil coherence is linked with lower annual sand dust deposition and AOD measurements, emphasizing the importance of this data for informed decision-making. The study employs a unique combination of data sources and machine learning algorithms to predict soil coherence, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBOOST), Gaussian Process Regression (GPR), Random Forest (RF), and 1D Convolutional Neural Network (CNN), with the Random Forest model achieving the lowest root mean squared error (RMSE) of 0.0826. These contributions enhance our understanding and provide a valuable framework for infrastructure development in similar environments.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] SENTINEL-1 AND SENTINEL-2 DATA FUSION FOR URBAN CHANGE DETECTION
    Benedetti, Alessia
    Picchiani, Matteo
    Del Frate, Fabio
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1962 - 1965
  • [22] MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES USING SENTINEL-2 AND SENTINEL-1 DATA
    Wang, Tiejun
    Luo, Yansha
    Sun, Yiwen
    Liu, Xinhui
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8381 - 8384
  • [23] Development of Machine Learning Models to Predict Compressed Sward Height in Walloon Pastures Based on Sentinel-1, Sentinel-2 and Meteorological Data Using Multiple Data Transformations
    Nickmilder, Charles
    Tedde, Anthony
    Dufrasne, Isabelle
    Lessire, Francoise
    Tychon, Bernard
    Curnel, Yannick
    Bindelle, Jerome
    Soyeurt, Helene
    REMOTE SENSING, 2021, 13 (03)
  • [24] Application of Sentinel-1 VH and VV and Sentinel-2 for soil moisture studies
    Dabrowska-Zielinska, Katarzyna
    Budzynska, Maria
    Gurdak, Radoslaw
    Musial, Jan
    Malinska, Alicja
    Gatkowska, Martyna
    Bartold, Maciej
    ACTIVE AND PASSIVE MICROWAVE REMOTE SENSING FOR ENVIRONMENTAL MONITORING, 2017, 10426
  • [25] Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas
    Kaplan, Gordana
    Gasparovic, Mateo
    Alqasemi, Abduldaem S.
    Aldhaheri, Alya
    Abuelgasim, Abdelgadir
    Ibrahim, Majed
    PHYSICS AND CHEMISTRY OF THE EARTH, 2023, 130
  • [26] Spatial Estimation of Soil Organic Carbon Content Utilizing PlanetScope, Sentinel-2, and Sentinel-1 Data
    Wang, Ziyu
    Wu, Wei
    Liu, Hongbin
    REMOTE SENSING, 2024, 16 (17)
  • [27] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    REMOTE SENSING OF ENVIRONMENT, 2020, 243 (243)
  • [28] Irrigation Mapping on Two Contrasted Climatic Contexts Using Sentinel-1 and Sentinel-2 Data
    Elwan, Ehsan
    Le Page, Michel
    Jarlan, Lionel
    Baghdadi, Nicolas
    Brocca, Luca
    Modanesi, Sara
    Dari, Jacopo
    Quintana Segui, Pere
    Zribi, Mehrez
    WATER, 2022, 14 (05)
  • [29] Spatial-temporal constraints for surface soil moisture mapping using Sentinel-1 and Sentinel-2 data over agricultural regions
    Zhou, Yanan
    Wang, Binyao
    Zhu, Weiwei
    Feng, Li
    He, Qisheng
    Zhang, Xin
    Wu, Tianjun
    Yan, Nana
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 219
  • [30] Deep Forest classifier for wetland mapping using the combination of Sentinel-1 and Sentinel-2 data
    Jamali, Ali
    Mahdianpari, Masoud
    Brisco, Brian
    Granger, Jean
    Mohammadimanesh, Fariba
    Salehi, Bahram
    GISCIENCE & REMOTE SENSING, 2021, 58 (07) : 1072 - 1089