Investigating the Antimicrobial, Antidiabetes, and Antioxidant Potential of Hydroxyl-Containing Schiff Bases, In Vitro, and Computational Studies

被引:0
作者
Adeleke, Adesola A. [1 ]
Oladipo, Segun D. [1 ,2 ]
Luckay, Robert C. [2 ]
Akintemi, Eric Oluwafisayo [3 ]
Olofinsan, Kolawole A. [4 ]
Yussuf, Sodiq T. [1 ]
Ademosu, Damilare D. [1 ]
机构
[1] Olabisi Onabanjo Univ, Dept Chem Sci, PMB 2002, Ago Iwoye, Nigeria
[2] Stellenbosch Univ, Dept Chem & Polymer Sci, Private Bag X1, ZA-7602 Matieland, South Africa
[3] Univ South Africa, Dept Chem, Florida Sci Campus, ZA-1709 Johannesburg, South Africa
[4] Univ Free State, Dept Pharmacol, ZA-9301 BLOEMFONTEIN, South Africa
来源
CHEMISTRYSELECT | 2025年 / 10卷 / 07期
关键词
Antidiabetic; Antioxidant; DFT; In vitro antibacterial; Imines; Molecular docking; DESIGN; DNA;
D O I
10.1002/slct.202404896
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Four azomethine compounds (L1-L4) derived from the reaction of p-hydroxybenzaldehyde and various primary amines are reported herein. Various analytical and spectroscopic techniques were employed to characterize the synthesized compounds. The antidiabetic properties of L1-L4 were evaluated by exploring alpha-amylase and alpha-glucosidase assays, where L2 and L3 displayed good antidiabetic properties with an IC50 values of 0.06 and 0.03 mg/ml for the alpha-amylase assay, respectively, better than the acarbose (standard drug) with IC50 value of 0.08 mg/ml. With the exception of L4, the antioxidant activity of L1-L4 showed good nitric oxide radical scavenging capacity and their significant DPPH free radical scavenging ability. The antibacterial activities of the compounds are dose-dependent, and compounds L1 and L2 showed notable activities. Computational studies of L1-L4 using density functional theory and the molecular docking methods indicated that L2 had an energy gap of 7.10 eV, making it the least reactive, while L3 had an energy gap of 6.52 eV, making it the most chemically reactive.
引用
收藏
页数:16
相关论文
共 76 条
[1]  
Meena R., Meena P., Kumari A., Sharma N., Fahmi N., Schiff Base in Organic, Inorganic and Physical Chemistry, (2023)
[2]  
Adeleke A.A., Omondi B., Molbank, 2022, (2022)
[3]  
Oladipo S.D., Yusuf T.L., Zamisa S.J., Tolufashe G.F., Olofinsan K.A., Tywabi-Ngeva Z., Mabuba N., Eur. J. Chem., 12, pp. 204-215, (2021)
[4]  
Wei L., Zhang J., Tan W., Wang G., Li Q., Dong F., Guo Z., Int. J. Biol. Macromol., 179, pp. 292-298, (2021)
[5]  
Ahmad S., Khan M., Rehman N.U.R., Ikram M., Rehman S., Ali M., Uddin J., Khan A., Alam A., Al-Harrasi A., Molecules, 27, (2022)
[6]  
Al-Masoudi N.A., Aziz N.M., Mohammed A.T., Phosphorus, Sulfur, and Silicon, 184, pp. 2891-2901, (2009)
[7]  
Meeran I.S., Raja T.W., Dusthakeer V.A., Ali M.M.N., Tajudeen S.S., Shabeer T.K., New J. Chem., 46, pp. 4620-4633, (2022)
[8]  
Adeleke A.A., Islam M.S., Olofinsan K., Salau V.F., Mocktar C., Omondi B., New J. Chem., 45, pp. 17827-17846, (2021)
[9]  
Oladipo S.D., Luckay R.C., Olofinsan K.A., Obakachi V.A., Zamisa S.J., Adeleke A.A., Badeji A.A., Ogundare S.A., George B.P., Heliyon, 10, (2024)
[10]  
Yusuf T.L., Akintayo D.C., Oladipo S.D., Adeleke A.A., Olofinsan K., Vatsha B., Mabuba N., New J. Chem., 46, pp. 12968-12980, (2022)