The Effect of Class-Weighted Penalization in Deep Neural Networks for Multi-Class Cell Segmentation

被引:0
|
作者
Aydin, Musa [1 ]
Kus, Zeki [1 ]
Kiraz, Berna [3 ]
Hosavci, Reyhan [1 ,2 ]
Kiraz, Alper [4 ]
机构
[1] Fatih Sultan Mehmet Vakif Univ, Bilgisayar Muhendisligi, Istanbul, Turkiye
[2] Fatih Sultan Mehmet Vakif Univ, Biyomed Muhendisligi, Istanbul, Turkiye
[3] Fatih Sultan Mehmet Vakif Univ, Yapay Zeka & Veri Muhendisligi, Istanbul, Turkiye
[4] Koc Univ, Elekt Elekt Muhendisligi, Fiz, Istanbul, Turkiye
来源
32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024 | 2024年
关键词
Cell segmentation; classification; class weighted penalization;
D O I
10.1109/SIU61531.2024.10601040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning networks give successful results in many areas, but their complexity leads to problems such as overfitting. Many approaches have been proposed to solve this problem, and class-based penalization has been one of the methods that have yielded successful results. With class-based penalization, it has become possible to increase the prediction performance and improve the model's generalization capability, especially in cases with class imbalance. This study investigates the effect of class-based penalization on the multiclass cell segmentation problem. Two deep neural network models (Resnet18, EfficientNet) are tested with 6 different configurations created for class-based penalization, and the results are compared. The experimental studies show the relationship between class-based loss penalties and multiclass segmentation/classification performance. The results show that class-based penalization improves the total performance of EfficientNet and Resnet18 networks by 11.82(C2+C3) and 12.79(C2+C3) points, respectively. It is shown that the proposed method can improve the prediction performance without increasing the model complexity.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] A closed-form reduction of multi-class cost-sensitive learning to weighted multi-class learning
    Xia, Fen
    Yang, Yan-wu
    Zhou, Liang
    Li, Fuxin
    Cai, Min
    Zeng, Daniel D.
    PATTERN RECOGNITION, 2009, 42 (07) : 1572 - 1581
  • [12] Evaluation of the Potential of Convolutional Neural Networks and Random Forests for Multi-Class Segmentation of Sentinel-2 Imagery
    Syrris, Vasileios
    Hasenohr, Paul
    Delipetrev, Blagoj
    Kotsev, Alexander
    Kempeneers, Pieter
    Soille, Pierre
    REMOTE SENSING, 2019, 11 (08)
  • [13] Deep Multi-Scale Fusion Neural Network for Multi-Class Arrhythmia Detection
    Wang, Ruxin
    Fan, Jianping
    Li, Ye
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (09) : 2461 - 2472
  • [14] A multi-modal deep neural network for multi-class liver cancer diagnosis
    Khan, Rayyan Azam
    Fu, Minghan
    Burbridge, Brent
    Luo, Yigang
    Wu, Fang-Xiang
    NEURAL NETWORKS, 2023, 165 : 553 - 561
  • [15] MULTI-CLASS SEGMENTATION OF URBAN FLOODS FROM MULTISPECTRAL IMAGERY USING DEEP LEARNING
    Potnis, Abhishek V.
    Shinde, Rajat C.
    Durbha, Surya S.
    Kurte, Kuldeep R.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9741 - 9744
  • [16] A Deep Siamese Convolution Neural Network for Multi-Class Classification of Alzheimer Disease
    Mehmood, Atif
    Maqsood, Muazzam
    Bashir, Muzaffar
    Yang Shuyuan
    BRAIN SCIENCES, 2020, 10 (02)
  • [17] Deep learning for real-time multi-class segmentation of artefacts in lung ultrasound
    Howell, Lewis
    Ingram, Nicola
    Lapham, Roger
    Morrell, Adam
    McLaughlan, James R.
    ULTRASONICS, 2024, 140
  • [18] IMAGE SEGMENTATION AND RECOGNITION FOR MULTI-CLASS CHINESE FOOD
    Liang, Yuxiang
    Li, Jiangfeng
    Zhao, Qinpei
    Rao, Weixiong
    Zhang, Chenxi
    Wang, Congrong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3938 - 3942
  • [19] A Multi-class Probabilistic Neural Network for Pathogen Classification
    Ford, William
    Xiang, Kun
    Land, Walker
    Congdon, Robert
    Li, Yinglei
    Sadik, Omowunmi
    COMPLEX ADAPTIVE SYSTEMS: EMERGING TECHNOLOGIES FOR EVOLVING SYSTEMS: SOCIO-TECHNICAL, CYBER AND BIG DATA, 2013, 20 : 348 - 353
  • [20] Explaining deep multi-class time series classifiers
    Doddaiah, Ramesh
    Parvatharaju, Prathyush S.
    Rundensteiner, Elke
    Hartvigsen, Thomas
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (06) : 3497 - 3521