The Effect of Class-Weighted Penalization in Deep Neural Networks for Multi-Class Cell Segmentation

被引:0
|
作者
Aydin, Musa [1 ]
Kus, Zeki [1 ]
Kiraz, Berna [3 ]
Hosavci, Reyhan [1 ,2 ]
Kiraz, Alper [4 ]
机构
[1] Fatih Sultan Mehmet Vakif Univ, Bilgisayar Muhendisligi, Istanbul, Turkiye
[2] Fatih Sultan Mehmet Vakif Univ, Biyomed Muhendisligi, Istanbul, Turkiye
[3] Fatih Sultan Mehmet Vakif Univ, Yapay Zeka & Veri Muhendisligi, Istanbul, Turkiye
[4] Koc Univ, Elekt Elekt Muhendisligi, Fiz, Istanbul, Turkiye
来源
32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024 | 2024年
关键词
Cell segmentation; classification; class weighted penalization;
D O I
10.1109/SIU61531.2024.10601040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning networks give successful results in many areas, but their complexity leads to problems such as overfitting. Many approaches have been proposed to solve this problem, and class-based penalization has been one of the methods that have yielded successful results. With class-based penalization, it has become possible to increase the prediction performance and improve the model's generalization capability, especially in cases with class imbalance. This study investigates the effect of class-based penalization on the multiclass cell segmentation problem. Two deep neural network models (Resnet18, EfficientNet) are tested with 6 different configurations created for class-based penalization, and the results are compared. The experimental studies show the relationship between class-based loss penalties and multiclass segmentation/classification performance. The results show that class-based penalization improves the total performance of EfficientNet and Resnet18 networks by 11.82(C2+C3) and 12.79(C2+C3) points, respectively. It is shown that the proposed method can improve the prediction performance without increasing the model complexity.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Multi-Class Quantum Convolutional Neural Networks
    Mordacci, Marco
    Ferrari, Davide
    Amoretti, Michele
    PROCEEDINGS OF THE ACM ON WORKSHOP ON QUANTUM SEARCH AND INFORMATION RETRIEVAL, QUASAR 2024, 2024, : 9 - 16
  • [2] A multi-class skin Cancer classification using deep convolutional neural networks
    Saket S. Chaturvedi
    Jitendra V. Tembhurne
    Tausif Diwan
    Multimedia Tools and Applications, 2020, 79 : 28477 - 28498
  • [3] A multi-class skin Cancer classification using deep convolutional neural networks
    Chaturvedi, Saket S.
    Tembhurne, Jitendra V.
    Diwan, Tausif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (39-40) : 28477 - 28498
  • [4] Multi-Class Neural Networks to Predict Lung Cancer
    Rajan, Juliet Rani
    Chelvan, A. Chilambu
    Duela, J. Shiny
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (07)
  • [5] A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios
    Alejo, R.
    Valdovinos, R. M.
    Garcia, V.
    Pacheco-Sanchez, J. H.
    PATTERN RECOGNITION LETTERS, 2013, 34 (04) : 380 - 388
  • [6] Color Space Transformation and Multi-Class Weighted Loss for Adhesive White Blood Cell Segmentation
    Li, Huiying
    Zhao, Xiaoqing
    Su, Anyang
    Zhang, Haitao
    Liu, Jingxin
    Gu, Guiying
    IEEE ACCESS, 2020, 8 : 24808 - 24818
  • [7] Layered Convolutional Neural Networks for Multi-Class Image Classification
    Kasinets, Dzmitry
    Saeed, Amir K.
    Johnson, Benjamin A.
    Rodriguez, Benjamin M.
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2024, 2024, 13034
  • [8] Addressing the Big Data Multi-class Imbalance Problem with Oversampling and Deep Learning Neural Networks
    Gonzalez-Barcenas, V. M.
    Rendon, E.
    Alejo, R.
    Granda-Gutierrez, E. E.
    Valdovinos, R. M.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 216 - 224
  • [9] Deep multi-scale convolutional neural networks for automated classification of multi-class leaf diseases in tomatoes
    Elfatimi E.
    Eryiğit R.
    Elfatimi L.
    Neural Computing and Applications, 2024, 36 (02) : 803 - 822
  • [10] Multi-objective evolution of artificial neural networks in multi-class medical diagnosis problems with class imbalance
    Shenfield, Alex
    Rostami, Shahin
    2017 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2017, : 217 - 224