DB-MAGS: Multi-Anomaly Data Generation System for Transactional Databases

被引:0
|
作者
Shen, Yiqi [1 ]
Li, Sijia [1 ]
Shen, Miaodong [1 ]
Cai, Peng [1 ]
Xu, Weiyuan [2 ]
Li, Kai [2 ]
Cai, Jinlong [2 ]
机构
[1] East China Normal Univ, Shanghai, Peoples R China
[2] Meituan, Beijing, Peoples R China
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2024年 / 17卷 / 12期
基金
中国国家自然科学基金;
关键词
D O I
10.14778/3685800.3685909
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing database performance anomaly datasets have the problems of comprehensiveness in anomaly types, coarse-grained root causes, and unrealistic simulation for reproducing concurrent anomalies. To address these issues, we propose a data generation system tailored MAGS guarantees unified, authentic, and comprehensive data generation, while also providing fine-grained root causes. In the case of only a single anomaly occurred in the database, we categorize the factors affecting database performance anomalies, select five major categories of anomalies, and further subdivide each category into eighteen minor categories. This finer granularity of anomaly classification facilitates more specific and targeted anomaly remediation. For multiple anomalies simultaneously occurred in a database system, we categorize the relationships between anomalies into causal and concurrent, and enumerate different combinations of multiple anomalies, making the simulation of multiple anomaly scenarios more comprehensive and enhancing the diversity of generated data.
引用
收藏
页码:4497 / 4500
页数:4
相关论文
共 24 条
  • [1] Data-driven Anomaly Detection for Power System Generation Control
    Wang, Pengyuan
    Govindarasu, Manimaran
    Ashok, Aditya
    Sridhar, Siddharth
    McKinnon, David
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 1082 - 1089
  • [2] Advantage of Integration in Big Data: Feature Generation in Multi-Relational Databases for Imbalanced Learning
    Ahmed, Farrukh
    Samorani, Michele
    Bellinger, Colin
    Zaiane, Osmar R.
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 532 - 539
  • [3] Approach to Anomaly Detection in Microservice System with Multi-Source Data Streams
    ZHANG Qixun
    HAN Jing
    CHENG Li
    ZHANG Baisheng
    GONG Zican
    ZTECommunications, 2022, 20 (03) : 85 - 92
  • [4] Research on data anomaly discrimination method for multi-station fusion measurement system
    Xu, Minrui
    Lu, Shufeng
    Li, Zhixin
    Lu, Zigang
    Chen, Gang
    Huang, Tianchao
    2023 5TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES, 2023, : 1111 - 1116
  • [5] Demonstration of DB-GPT: Next Generation Data Interaction System Empowered by Large Language Models
    Xue, Siqiao
    Qi, Danrui
    Jiang, Caigao
    Cheng, Fangyin
    Chen, Keting
    Zhang, Zhiping
    Zhang, Hongyang
    Wei, Ganglin
    Zhao, Wang
    Zhou, Fan
    Yi, Hong
    Liu, Shaodong
    Yang, Hongjun
    Chen, Faqiang
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (12): : 4365 - 4368
  • [6] MADMM: microservice system anomaly detection via multi-modal data and multi-feature extraction
    Wang P.
    Zhang X.
    Cao Z.
    Chen Z.
    Neural Computing and Applications, 2024, 36 (25) : 15739 - 15757
  • [7] System to build fuzzy logic models from databases and application to multi-sensor data
    Witus, G
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS AND TECHNOLOGY III, 2001, 4384 : 171 - 179
  • [8] BIODBLINK: MULTI-LEVEL DATA MATCHING FOR AUTOMATIC GENERATION OF CROSS LINKS AMONG BIOCHEMICAL PATHWAY DATABASES
    Tsay, Jyh-Jong
    Wu, Bo-Liang
    Dai, Hou-Ji
    BIOINFORMATICS 2011, 2011, : 125 - 130
  • [9] Automatic Generation of Power System Simulation Data Cases From Utility Databases: Introducing a new technology
    Noda, Taku
    Tadokoro, Tomo
    Dozaki, Takashi
    IEEE ELECTRIFICATION MAGAZINE, 2023, 11 (04): : 79 - 85
  • [10] BEAM: An Anomaly-Based Threat Detection System for Enterprise Multi-Domain Data
    Lin, Derek
    Li, Anying
    Foltz, Ryan
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2610 - 2618