Dual Copper/Photoredox Catalysis for Radical-Mediated Arylation and Alkylation of Sulfenamides

被引:1
作者
Zhang, Mingjun [1 ]
Tan, Yuhao [1 ]
Yang, Hehe [1 ]
Fu, Xiaoyang [1 ]
Liu, Yuxiu [1 ]
Wang, Ziwen [1 ,2 ]
Wang, Qingmin [1 ]
机构
[1] Nankai Univ, Res Inst Elemento Organ Chem, Coll Chem, Frontiers Sci Ctr New Organ Matter,State Key Lab E, Tianjin 300071, Peoples R China
[2] Tianjin Normal Univ, Coll Chem, Tianjin Key Lab Struct & Performance Funct Mol, Tianjin 300071, Peoples R China
来源
ACS CATALYSIS | 2025年 / 15卷 / 05期
关键词
sulfilimines; aryl radical-mediated XAT; arylsulfonium salts; alkyl iodides; photochemistry; HALOGEN; FUNCTIONALIZATION; SULFILIMINES; ACCESS;
D O I
10.1021/acscatal.5c00082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Radical-based pathways provide an attractive approach for constructing C(sp2/sp3)-S bonds from various substrates. Herein we report two strategies that can be used for aryl radical sulfilimination of aryl sulfonium salts and aryl radical-mediated cross-coupling reactions between alkyl iodides and sulfenamides, both via synergetic photoredox and copper catalysis. These mild, operationally simple reactions have a broad substrate scope and potential utility for late-stage functionalization of natural products and drug molecules. In addition, both sulfilimination reactions can be carried out on a gram scale under continuous-flow conditions. Mechanistic studies indicate that rapid abstraction of the iodine atom from the alkyl iodide by sterically hindered, electron-rich aryl radicals and tuning of the electronic properties of the copper catalyst by varying the ligand contribute to the chemoselectivity for alkylation.
引用
收藏
页码:4007 / 4016
页数:10
相关论文
共 60 条
  • [1] Brown N., Bioisosteres in Medicinal Chemistry, (2012)
  • [2] Sun H., Tawa G., Wallqvist A., Classification of scaffold hopping approaches, Drug Discov. Today., 17, pp. 310-324, (2012)
  • [3] Miyazaki I., Simizu S., Okumura H., Takagi S., Osada H., A small-molecule inhibitor shows that pirin regulates migration of melanoma cells, Nat. Chem. Biol., 6, pp. 667-673, (2010)
  • [4] Zhou S., Gu Y., Liu M., Wu C., Zhou S., Zhao Y., Jia Z., Wang B., Xiong L., Yang N., Insecticidal Activities of chiral N-trifluoroacetyl sulfilimines as potential ryanodine receptor modulators, J. Agric. Food Chem., 62, pp. 11054-11061, (2014)
  • [5] Yu X., Zhang Y., Liu Y., Li Y., Wang Q., Synthesis and acaricidal- and insecticidal-activity evaluation of novel oxazolines containing sulfiliminyl moieties and their derivatives, J. Agric. Food Chem., 67, pp. 4224-4231, (2019)
  • [6] Furukawa N., Oae S.S., Sulfilimines. Synthetic applications and potential utilizations, Ind. Eng. Chem. Prod. Res. Dev., 20, pp. 260-270, (1981)
  • [7] Bizet V., Hendriks C.M.M., Bolm C., Sulfur imidations: access to sulfimides and sulfoximines, Chem. Soc. Rev., 44, pp. 3378-3390, (2015)
  • [8] Zheng W., Chen X., Chen F., He Z., Zeng Q., Syntheses and transformations of sulfoximines, Chem. Rec., 21, pp. 396-416, (2021)
  • [9] Passia M.T., Schoebel J.-H., Bolm C., Sulfondiimines: synthesis, derivatisation and application, Chem. Soc. Rev., 51, pp. 4890-4901, (2022)
  • [10] Cheng Q., Chen J., Lin S., Ritter T., Allylic Amination of alkenes with iminothianthrenes to afford alkyl allylamines, J. Am. Chem. Soc., 142, pp. 17287-17293, (2020)